Data aggregation from various web sources is very significant for web data analysis domain. In ad- dition, the recognition of coherence micro cluster is one of the most interesting issues in the field of data aggregat...Data aggregation from various web sources is very significant for web data analysis domain. In ad- dition, the recognition of coherence micro cluster is one of the most interesting issues in the field of data aggregation. Until now, many algorithms have been proposed to work on this issue. However, the deficiency of these solutions is that they cannot recognize the micro-cluster data stream accurately. A semantic-based coherent micro-cluster recognition algorithm for hybrid web data stream is nronosed.Firstly, an objective function is proposed to recognize the coherence micro-cluster and then the coher- ence micro-cluster recognition algorithm for hybrid web data stream based on semantic is raised. Fi-展开更多
In order to accurately identify the characters associated with consumption behavior of apparel online shopping, a typical B/ C clothing enterprise in China was chosen. The target experimental database containing 2000 ...In order to accurately identify the characters associated with consumption behavior of apparel online shopping, a typical B/ C clothing enterprise in China was chosen. The target experimental database containing 2000 data records was obtained based on web service logs of sample enterprise. By means of clustering algorithm of Clementine Data Mining Software, K-means model was set up and 8 clusters of consumer were concluded. Meanwhile, the implicit information existed in consumer's characters and preferences for clothing was found. At last, 31 valuable association rules among casual wear, formal wear, and tie-in products were explored by using web analysis and Aprior algorithm. This finding will help to better understand the nature of online apparel consumption behavior and make a good progress in personalization and intelligent recommendation strategies.展开更多
基金Supported by the National High Technology Research and Development Programme of China(No.2011AA120300,2011AA120302)the National Key Technology Support Program of China(No.2013BAH66F02)
文摘Data aggregation from various web sources is very significant for web data analysis domain. In ad- dition, the recognition of coherence micro cluster is one of the most interesting issues in the field of data aggregation. Until now, many algorithms have been proposed to work on this issue. However, the deficiency of these solutions is that they cannot recognize the micro-cluster data stream accurately. A semantic-based coherent micro-cluster recognition algorithm for hybrid web data stream is nronosed.Firstly, an objective function is proposed to recognize the coherence micro-cluster and then the coher- ence micro-cluster recognition algorithm for hybrid web data stream based on semantic is raised. Fi-
基金Scientific Research Program Funded by Shaanxi Provincial Education Department,China(No.2013JK0749)
文摘In order to accurately identify the characters associated with consumption behavior of apparel online shopping, a typical B/ C clothing enterprise in China was chosen. The target experimental database containing 2000 data records was obtained based on web service logs of sample enterprise. By means of clustering algorithm of Clementine Data Mining Software, K-means model was set up and 8 clusters of consumer were concluded. Meanwhile, the implicit information existed in consumer's characters and preferences for clothing was found. At last, 31 valuable association rules among casual wear, formal wear, and tie-in products were explored by using web analysis and Aprior algorithm. This finding will help to better understand the nature of online apparel consumption behavior and make a good progress in personalization and intelligent recommendation strategies.