期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
一种用于Web服务预测的改进PPM模型
1
作者 张亚光 王积鹏 王源 《中国电子科学研究院学报》 2012年第6期590-595,共6页
针对现有PPM模型预测准确率不够高,且无法处理好预测准确率与预测代价之间平衡的问题,提出了一种新的改进PPM模型(PD-PPM)用于Web服务预测,以便更实时地向用户提供个性化、智能化的服务。为了建立该模型,定义了Web服务编码结构、错误补... 针对现有PPM模型预测准确率不够高,且无法处理好预测准确率与预测代价之间平衡的问题,提出了一种新的改进PPM模型(PD-PPM)用于Web服务预测,以便更实时地向用户提供个性化、智能化的服务。为了建立该模型,定义了Web服务编码结构、错误补偿矩阵(ECM)、子类服务PPM模型(SW-PPM)和大类服务PPM模型(PW-PPM),并利用控制领域的PD控制算法,在SW-PPM模型与PW-PPM模型之间进行切换控制和参数调整;此外,还在ECM的基础上建立了错误补偿机制。经实验证明,PD-PPM模型能有效平衡预测准确率和预测代价之间的矛盾,并可以对预测准确率进行精准地跟踪控制,从而达到了预期的效果。 展开更多
关键词 web服务预测 匹配预测 PD闭环控制 错误补偿机制
下载PDF
A Practice Guide of Software Aging Prediction in a Web Server Based on Machine Learning 被引量:2
2
作者 Yongquan Yan Ping Guo 《China Communications》 SCIE CSCD 2016年第6期225-235,共11页
In the past two decades, software aging has been studied by both academic and industry communities. Many scholars focused on analytical methods or time series to model software aging process. While machine learning ha... In the past two decades, software aging has been studied by both academic and industry communities. Many scholars focused on analytical methods or time series to model software aging process. While machine learning has been shown as a very promising technique in application to forecast software state: normal or aging. In this paper, we proposed a method which can give practice guide to forecast software aging using machine learning algorithm. Firstly, we collected data from a running commercial web server and preprocessed these data. Secondly, feature selection algorithm was applied to find a subset of model parameters set. Thirdly, time series model was used to predict values of selected parameters in advance. Fourthly, some machine learning algorithms were used to model software aging process and to predict software aging. Fifthly, we used sensitivity analysis to analyze how heavily outcomes changed following input variables change. In the last, we applied our method to an IIS web server. Through analysis of the experiment results, we find that our proposed method can predict software aging in the early stage of system development life cycle. 展开更多
关键词 software aging software rejuvenation machine learning web server
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部