期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Composite wedge failure using photogrammetric measurements and DFN-DEM modelling 被引量:2
1
作者 Viviana Bonilla-Sierra Marc Elmouttie +1 位作者 FrédéricVictor Donzé Luc Scholtès 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2017年第1期41-53,共13页
Analysis and prediction of structural instabilities in open pit mines are an important design and operational consideration for ensuring safety and productivity of the operation. Unstable wedges and blocks occurring a... Analysis and prediction of structural instabilities in open pit mines are an important design and operational consideration for ensuring safety and productivity of the operation. Unstable wedges and blocks occurring at the surface of the pit walls may be identified through three-dimensional(3D) image analysis combined with the discrete fracture network(DFN) approach. Kinematic analysis based on polyhedral modelling can be used for first pass analysis but cannot capture composite failure mechanisms involving both structurally controlled and rock mass progressive failures. A methodology is proposed in this paper to overcome such limitations by coupling DFN models with geomechanical simulations based on the discrete element method(DEM). Further, high resolution photogrammetric data are used to identify valid model scenarios. An identified wedge failure that occurred in an Australian coal mine is used to validate the methodology. In this particular case, the failure surface was induced as a result of the rock mass progressive failure that developed from the toe of the structure inside the intact rock matrix. Analysis has been undertaken to determine in what scenarios the measured and predicted failure surfaces can be used to calibrate strength parameters in the model. 展开更多
关键词 Open pit mine Polyhedral modelling Discrete fracture network(DFN) Discrete element method(DEM) wedge failure
下载PDF
Integrated simulation and monitoring to analyze failure mechanism of the anti-dip layered slope with soft and hard rock interbedding
2
作者 Jinduo Li Yuan Gao +5 位作者 Tianhong Yang Penghai Zhang Yong Zhao Wenxue Deng Honglei Liu Feiyue Liu 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第9期1147-1164,共18页
The significant difference between the mechanical properties of soft rock and hard rock results in the complexity of the failure mode of the anti-dip layered slope with soft and hard rock interbedding.In order to reve... The significant difference between the mechanical properties of soft rock and hard rock results in the complexity of the failure mode of the anti-dip layered slope with soft and hard rock interbedding.In order to reveal the landslide mechanism,taking the north slope of Fushun West Open-pit Mine as an example,this paper analyzed the failure mechanism of different landslides with monitoring and field surveys,and simulated the evolution of landslides.The study indicated that when the green mudstone(hard rock)of the anti-dip slope contains siltized intercalations(soft rock),the existence of weak layers not only aggravates the toppling deformation of anti-dip layered slope with high dip,but also causes the shear failure of anti-dip layered slope with stable low dip.The shear failure including subsidence induced sliding and wedge failure mainly exists in the unloading zone of the slope.Its failure depth and failure time were far less than that of toppling failure.In terms of the development characteristics of deformation,toppling deformation has the long-term and progressive characteristics,but shear failure deformation has the abrupt and transient characteristics.This study has deepened the understanding of such slope landslide mechanism,and can provide reference for similar engineering. 展开更多
关键词 Anti-dip layered slope Soft and hard rock interbedding Toppling failure wedge failure Fushun West Open-pit Mine
下载PDF
Hill slope instability of Nainital City,Kumaun Lesser Himalaya,Uttarakhand,India 被引量:1
3
作者 Nirvan Sah Mohit Kumar +1 位作者 Rajeev Upadhyay Som Dutt 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2018年第2期280-289,共10页
Nainital City of Kumaun Lesser Himalaya is prone to mass wasting processes during monsoon season,which mischievously triggers the hill slope instability in this region. Slate, dolomitic limestone, silty sandstone and ... Nainital City of Kumaun Lesser Himalaya is prone to mass wasting processes during monsoon season,which mischievously triggers the hill slope instability in this region. Slate, dolomitic limestone, silty sandstone and rhythmite of the Krol Formation are the main rock types. The present study focuses on the investigation of slope stability in the region in terms of potential seismicity and landslide. Geological and geotechnical mapping indicates that the major portion of the area is characterized by slope wash materials and buildings. The combination of 3-4 joint sets with one random joint is the main structure at outcrops.The major geological structures of this area are Nainital lake fault passing from the center of the lake, Main Boundary Thrust at SW, and Khuriya Fault passing from the SE direction of Nainital City. This work finds that different types of discontinuities(e.g. joints and faults), overburden due to unplanned civil structures,and neotectonic activity in the vicinity of this ara affect the stability of the city. The slate forms the base of the city, dipping slightly towards the lake side along the NW direction, thus accelerating the instability of this area. Rock mass rating(RMR), slope mass rating, factor of safety(FOS) and graphical analysis of the discontinuity for slope kinematics indicate that the study area is a landslide-prone zone. This study can facilitate reducing the risk of human life, and contribute to the ongoing construction works in the area. 展开更多
关键词 Hill slope instability Himalaya region wedge failure Rock mass rating(RMR) Factor of safety(FOS)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部