Wedge-shaped copper casting experiment was conducted to study the engulfment behavior of TiB2 particle and the interaction between particle or cluster and the solid/liquid front in commercial pure aluminum matrix. The...Wedge-shaped copper casting experiment was conducted to study the engulfment behavior of TiB2 particle and the interaction between particle or cluster and the solid/liquid front in commercial pure aluminum matrix. The experimental results show that the particle size distribution obeys two separate systems in the whole wedge-cast sample. Furthermore, it is found that the big clusters are pushed to the center of the wedge shaped sample and the single particle or small clusters consisting of few particles are engulfed into the α-Al in the area of the sample edge. The cluster degree of particles varies in different areas, and its value is 0.2 and 0.6 for the cluster fraction in the edge and in the center of the wedge sample, respectively. The cluster diameter does not obey the normal distribution but approximately obeys lognormal distribution in the present work. More importantly, in the whole sample, the particle size obeys two separate log-normal distributions.展开更多
Based on the fundamental equations of piezoelasticity of quasicrystal material,we investigated the interaction between a screw dislocation and a wedge-shaped crack in the piezoelectricity of one-dimensional hexagonal ...Based on the fundamental equations of piezoelasticity of quasicrystal material,we investigated the interaction between a screw dislocation and a wedge-shaped crack in the piezoelectricity of one-dimensional hexagonal quasicrystals.Explicit analytical solutions are obtained for stress and electric displacement intensity factors of the crack,as well as the force on dislocation.The derivation is based on the conformal mapping method and the perturbation technique.The influences of the wedge angle and dislocation location on the image force are also discussed.The results obtained in this paper can be fully reduced to some special cases already available or deriving new ones.展开更多
One wedge-shaped microchannel was established,and the hydrodynamic properties of the wedge-shaped gas film were comprehensively investigated.The Navier-Stokes equations coupled with the full energy equation were adopt...One wedge-shaped microchannel was established,and the hydrodynamic properties of the wedge-shaped gas film were comprehensively investigated.The Navier-Stokes equations coupled with the full energy equation were adopted to mainly analyze the lubrication hydrodynamics of the gas film,as the horizontal plate was viewed as the adiabatic wall or the horizontal plate temperature was equal to the tilt plate temperature.A higher gas film temperature strengthened the rarefaction effect,and the more rarefied gas weakened the squeeze.Meanwhile,the vertical flow across the gas film could indicate the relation between the velocity vector and the gas film squeeze and expansion.The adiabatic horizontal plate could resist the heat conduction and enhance the rarefaction effect,and thus the direction of motion of the gas molecules was easier to be changed.展开更多
We report some novel dynamical phenomena of dissipative solitons supported by introducing an asymmetric wedge-shaped potential(just as a sharp ‘razor') into the complex Ginzburg–Landau equation with the cubicqui...We report some novel dynamical phenomena of dissipative solitons supported by introducing an asymmetric wedge-shaped potential(just as a sharp ‘razor') into the complex Ginzburg–Landau equation with the cubicquintic nonlinearity. The potentials corresponding to a local refractive index modulation with breaking symmetry can be realized in an active optical medium with respective expanding antiwaveguiding structures. Using the razor potential acting on a central dissipative soliton, possible outcomes of asymmetric and single-side splitting of dissipative solitons are achieved with setting different strengths and steepness of the potentials. The results can potentially be used to design a multi-route splitter for light beams.展开更多
The KTX device is a reversed field pinch (RFP) device currently under construction. Its maximum plasma current is designed as 1 MA with a discharge time longer than 100 ms. Its major radius is 1.4 m and its minor ra...The KTX device is a reversed field pinch (RFP) device currently under construction. Its maximum plasma current is designed as 1 MA with a discharge time longer than 100 ms. Its major radius is 1.4 m and its minor radius is 0.55 m. One of the most important problems in the magnet system design is how to reduce the TF magnetic field ripple and error field. A new wedge- shaped TF coil is put forward for the KTX device and its electromagnetic properties are compared with those of rectangular-shaped TF coils. The error field B,I/Bt of wedge-shaped TF coils with 6.4 degrees is about 6% as compared with 8% in the case of a rectangular-shaped TF coil. Besides, the wedge-shaped TF coils have a lower magnetic field ripple at the edge of the plasma region, which is smaller than 7.5% at R=1.83 m and 2% at R=l.07 m. This means that the tokamak operation mode may be feasible for this device when the plasma area becomes smaller, because the maximum ripple in the plasma area of the tokamak model is always required to be smaller than 0.4%. Detailed analysis of the results shows that the structure of the wedged-shape TF coil is reliable. It can serve as a reference for TF coil design of small aspect ratio RFPs or similar torus devices.展开更多
With the application of supercavitation effect, a novel device named rotational supercavitating evaporator(RSCE) was recently designed for desalination. In order to improve the blade shape of rotational cavitator in R...With the application of supercavitation effect, a novel device named rotational supercavitating evaporator(RSCE) was recently designed for desalination. In order to improve the blade shape of rotational cavitator in RSCE for performance optimization and then design three-dimensional blades, numerical simulations are conducted on the supercavitating flows(with cavitation number ranging from 0.055 to 0.315) around two-dimensional planar symmetric wedge-shaped cavitators with different wedge angles varied from 10 to 180 degrees. Proper numerical method for simulating supercavitating flows around planar symmetric cavitator is established, and assessment of k-ε-v2 -f turbulence model in simulating cavitating flows is conducted. It shows that the size of computational domain would affect the simulation result. Empirical formulae for supercavity dimensions about cavitation number at different wedge angles are obtained, which are of significant importance in the subsequent design of three-dimensional blade. The characteristics of resistance at different wedge angles are discussed, which, together with the characteristics of supercavity dimensions, play important roles in the optimal design of RSCE.展开更多
This laboratory study deals with the hydraulic jump properties for an artificially roughened bed with wedge-shaped baffle blocks. The experiments were conducted for both smooth and rough beds with a Froude number in t...This laboratory study deals with the hydraulic jump properties for an artificially roughened bed with wedge-shaped baffle blocks. The experiments were conducted for both smooth and rough beds with a Froude number in the range of 3.06≤F1≤10.95 and a relative bed roughness ranging 0.22≤KR≤1.4. The data from this study were compared with those of rectangular baffle blocks. New experimental formulae were developed for determining the sequent depth ratio and the hydraulic jump length in terms of the inflow Froude number and relative bed roughness. Bélanger's jump equation of a rectangular channel was extended to account for the implications of the bed shear stress coefficient attributable to channel bed roughness. It was found that, in comparison with the smooth bed, the wedge-shaped bed roughness reduced the sequent depth of the hydraulic jump by approximately 16.5% to 30% and the hydraulic jump length by approximately 30% to 53%.展开更多
The heat transfer in a novel smooth wedge-shaped cooling channel with lateral ejection of turbine blade trailing edge is experimentally investigated in both non-rotating and rotating cases.Beside the conventional inle...The heat transfer in a novel smooth wedge-shaped cooling channel with lateral ejection of turbine blade trailing edge is experimentally investigated in both non-rotating and rotating cases.Beside the conventional inlet at the bottom of the channel, an extra coolant injection from 8 lateral non-equant holes is introduced to improve the overall heat transfer. The total mass flow rate ratio(lateral mass flow rate/total mass flow rate) varies from 0 to 1.0. The major inlet Reynolds number and rotation number respectively vary from 10000 to 20000 and from 0 to 1.16. Experimental results show that the lateral inlet decreases local bulk temperature and increases local heat transfer at the middle and the top of the static channel. In rotating cases, the lateral inlet notably improves the heat transfer at the high-radius half channel and compensates the negative effects induced by the rotation. Both intensity and uniformity of heat transfer inside the channel are enhanced while flow resistance decreases with proper mass flow rate ratio of coolant from two inlets. The most satisfactory total mass flow rate ratio is around 2/3. This new structural style of cooling channel has huge potential and provides new direction of heat transfer of turbine blade trailing edge.展开更多
The analytical expression for the complex amplitude of light reflected from a wedge-shaped thin film is derived. For plane wave incidence, a simple ray tracing approach is used to calculate Goos-Hanchen (GH) shifts;...The analytical expression for the complex amplitude of light reflected from a wedge-shaped thin film is derived. For plane wave incidence, a simple ray tracing approach is used to calculate Goos-Hanchen (GH) shifts; and for non-plane wave incidence, for example, a Gaussian beam, the angular spectrum approach of plane wave is used in simulation. The two approaches predict that a wedge-shaped thin film can produce large negative longitudinal GH shifts. Although the reflectivity is small near the condition of resonance, the large negative GH shifts can be more easily detected in comparison with the shift from a plane-parallel film in vacuum.展开更多
In this study,we constructed two annular detector arrays comprising 24 wedge-shaped CsI(Tl) crystals,and tested them using anαsource and radioactive beams of ^(14-16) Con a CD_2 target.We compared the properties of a...In this study,we constructed two annular detector arrays comprising 24 wedge-shaped CsI(Tl) crystals,and tested them using anαsource and radioactive beams of ^(14-16) Con a CD_2 target.We compared the properties of a CsI(Tl) crystal encapsulated with various reflectors,revealing that using the 80-μm-thick ESR film to pack the CsI(Tl) crystal yielded the largest light output with the smallest non-uniformity in light output (ΔLO).For the 24 CsI(Tl) detectors with the 80-μm-thick ESR films,the average energy resolution improved as the average light output increased;however,it deteriorated as theΔLO value increased.To form two annular Si-CsI(Tl) telescopes for identifying the light-charged particles,theΔLO value and energy resolution of each CsI(Tl) detector were maintained under 20%and 7.7%,respectively.These telescopes were tested for the first time in a direct nuclear reaction experiment using ^(14-16) C+d.The results demonstrated that the Z=1 and Z=2 charged particles were adequately discriminated by the telescopes using the standardΔE-E method.展开更多
Mining-induced fracture zone will be produced in the overlying strata after the coal was mined.In this article,the mining-induced deformation of overlying strata and the time-space evolution law of fissure were studie...Mining-induced fracture zone will be produced in the overlying strata after the coal was mined.In this article,the mining-induced deformation of overlying strata and the time-space evolution law of fissure were studied by the methods of physical simulation and field measurement.The results show that bed separation fissure and vertical fissure will appear in the overlying strata above mining face,which form the wedge-shaped fissure zone.The open degree of fissure depends on the size of uncoordinated deformation between neighbor layers,and the absolute strata sinking controls both the width of bed separation zone and the open degree of vertical breakage fissure.At last,the calculating formula was deducted based on theoretical analysis.展开更多
t Research and development of safe and effective control technology of hard roof is an inevitable trend at present. Directional hydraulic fracturing technology is expected to become a safe and effective way to control...t Research and development of safe and effective control technology of hard roof is an inevitable trend at present. Directional hydraulic fracturing technology is expected to become a safe and effective way to control and manage hard roof. In order to make hard roof fracture in a directional way, a hydraulic fracture field test has been conducted in the third panel district of Tashan Coal Mine in Datong. First, two hydraulic fracturing drilling holes and four observing drilling holes were arranged in the roof, followed by a wedge-shaped ring slot in each hydraulic fracturing drilling hole. The hydraulic fracturing holes were then sealed and, hydraulic fracturing was conducted. The results show that the hard roof is fractured directionally by the hydraulic fracturing function of the two fracturing drilling holes; the sudden drop, or the overall downward trend of hydraulic pressure from hydraulic monitoring is the proof that the rock in the hard roof has been fractured. The required hydraulic pressure to fracture the hard roof in Tashan coal mine, consisting of carboniferous sandstone layer, is 50.09 MPa, and the fracturing radius of a single drilling hole is not less than 10.5 m. The wedge-shaped ring slot made in the bottom of the hydraulic fracturing drilling hole plays a guiding role for crack propagation. After the hydraulic fracturing drill hole is cracked, the propagation of the resulting hydraulic crack, affected mainly by the regional stress field, will turn to other directions.展开更多
At the end of the open-pit mining process in large metal mines, the mining model must change from open-pit mining to underground mining, but the mutual interference between the two mining models leads to poor producti...At the end of the open-pit mining process in large metal mines, the mining model must change from open-pit mining to underground mining, but the mutual interference between the two mining models leads to poor production safety conditions and difficulties in production convergence during the transition period. To solve these technical problems of poor production safety conditions and difficulties in production convergence during the transition period, in this study, based on the case of the Dagu Mountain Mine, a new transition mode of wedge switching for collaborative mining is proposed and established, which is suitable for collaborative mining. This new mining process completely eliminates the boundary pillar and the artificial covering layer, combining the technology of the mining-induced caving method and the technology of deep mining at the bottom of the open-pit. The results show that 1) the optimization of the open-pit boundary reduces the amount of rock stripping, and 2) it achieves a stable transition of collaborative mining capacity. The study shows that the proposed method uses the technologies of the mining-induced caving method in underground mining and deep mining at the bottom of the open pit in open-pit mining, and the method then optimizes the open-pit mining in detail by comparing the advantages of open-pit mining and underground mining. This study provides true and accurate technical support for the transition from open-pit mining to underground mining.展开更多
The solidification behavior of AISI DC 53 cold work tool steel was investigated by means of a cooling curve and its first derivative. Copper and sand wedge-shaped molds were used to obtain various solidification rates...The solidification behavior of AISI DC 53 cold work tool steel was investigated by means of a cooling curve and its first derivative. Copper and sand wedge-shaped molds were used to obtain various solidification rates. To reveal the cooling rate degree during solidification,the secondary dendrite arm spacing of the steel alloy was examined by scanning electron microscopy(SEM). The solidification rates of each section for both wedge steel samples were calculated by means of the secondary dendrite arm spacing using a research-based empirical relation from the literature. Experiment results revealed that at the tip region of the cast specimen in the copper wedgeshaped mold,the carbide size was 7–8 μm,where the solidification rate was approximately 4,830 °C·s-1. The greatest carbide size obtained in the upper region of the sand cast wedge-shaped specimen was 250–270 μm.展开更多
In light of multiple field experiments in typical tidal areas with active sea-land interaction, corresponding analysis through hydrodynamic simulation and of ion composition evolution all insist on following conclusio...In light of multiple field experiments in typical tidal areas with active sea-land interaction, corresponding analysis through hydrodynamic simulation and of ion composition evolution all insist on following conclusions. Due to the tide, the groundwater level is basically in line with its level but with a slight lag. Moreover, smaller amplitude of such changes were always accompanied by greater distance from shores. In this paper, two salt-freshwater interfaces were identified, namely, a large wedge-shaped interface and an inverted U-shaped one located at K5 (monitoring point). The critical hydraulic gradient of saltwater intrusion was between 0.0345 and 0.0377. Apart from that, mathematical and physical models were adopted to measure the influence of tides, showing a inverse proportion to the hydraulic gradient In addition, characteristics of ionic components can prove that K^+ was adsorbed and Ca^2+ was displaced during saline intrusion, while a reverse process was witnessed during desalting. In summary, cation exchange adsorption plus other complex physical chemical effects would take place during saltwater intrusion.展开更多
Longmen Mountain located at the boundary between the Sichuan Basin and Tibetan Plateau,representing the steepest gradient of any edges of the plateau.Three endmember models of uplift process and mechanism have been pr...Longmen Mountain located at the boundary between the Sichuan Basin and Tibetan Plateau,representing the steepest gradient of any edges of the plateau.Three endmember models of uplift process and mechanism have been proposed,including crustal thickening,crustal flow,and crustal isostatic rebound.Here we use coeval sedimentary sequences in the foreland basin to restraint uplift process and mechanism in the Longmen Mountain.The more than 10,000 m thick Late TriassicQuaternary strata filled in this foreland basin and can be divided into six megasequences that are distinguished as two distinct types.The first type is the wedge-shaped megasequences which are sedimentary response of strong active thrust loading events,characterized by a high rate of subsidence and sediment accumulation,coarsening-upward succession and a dual-sourced sediment supply.This type includes Late Triassic,Late Jurassic to Early Cretaceous and Late Cretaceous to Paleogene megasequences.The second type is the tabular megasequences,characterized by the low rate of subsidence and sediment accumulation,finingupward succession,and a single-sourced sediment supply,which is sedimentary response of isostatic rebound and erosion unloading.This type includes the Early to Middle Jurassic,Middle Cretaceous and Neogene to Quaternary megasequences.Basing on sedimentary,active tectonic,geomorphic evidence,we infer that the direction has been reversed from SSWdirected sinistral strike-slip to NNE-directed dextral strike-slip during 40-3.6 Ma,and since 3.6 Ma,the Longmen Mountain thrust belt belong to times of isostatic rebound and erosional unloading with NNEdirected dextral strike-slip.This suggests that crustal isostatic rebound is a primary driver for uplift and topography of the present Longmen Mountain.The Wenchuan(Ms8.0) earthquake,which ruptured a large thrust fault with NNE-directed dextral strikeslip along the range front,is an active manifestation of this crustal isostatic rebound process with dextral strike-slipping and shortening.This process may be the cause for the Wenchuan Earthquake and the apparent paradox of high relief,little shortening,the relative dearth of historical seismicity in the region.展开更多
The orientation distribution function of cylindrical particle suspensions was deduced and numerically simulated, and an application was taken in a wedge-shaped flow field. The relationship between the orientation dist...The orientation distribution function of cylindrical particle suspensions was deduced and numerically simulated, and an application was taken in a wedge-shaped flow field. The relationship between the orientation distribution function and particle orientation angles was obtained. The results show that comparing with the most probable angle distribution which comes to being in short time, the distribution of the steady state doesn't vary much. in range; the main difference is the anti-clockwise rotation in the right and upper field, that is, particles rotate more at the points where the velocity gradients are larger. The most probable orientations are close to the direction of local streamlines. In the direction of streamlines, with poleradius decreasing, the most probable angles increase, but the angles between their orientations and the local streamlines decrease.展开更多
This paper presents a three-dimensional (3D) coupled-mode model using the direct-global-matrix technique as well as Fourier synthesis. This model is a full wave, two-way three-dimensional model, and is therefore cap...This paper presents a three-dimensional (3D) coupled-mode model using the direct-global-matrix technique as well as Fourier synthesis. This model is a full wave, two-way three-dimensional model, and is therefore capable of providing ac- curate acoustic field solutions. Because the problem of sound propagation excited by a point source in an ideal wedge with perfectly reflecting boundaries is one of a few three-dimensional problems with analytical solutions, the ideal wedge prob- lem is chosen in this work to validate the presented three-dimensional model. Numerical results show that the field results by analytical solutions and those by the presented model are in excellent agreement, indicating that the presented model can serve as a benchmark model for three-dimensional sound propagation problems involving a planar two-dimensional geometry as well as a point source.展开更多
Sound propagation in a wedge-shaped waveguide with perfectly reflecting boundaries is one of the few range- dependent problems with an analytical solution, and hence provides an ideal benchmark for a full two-way solu...Sound propagation in a wedge-shaped waveguide with perfectly reflecting boundaries is one of the few range- dependent problems with an analytical solution, and hence provides an ideal benchmark for a full two-way solution to the wave equation. An analytical solution for the sound propagation in an ideal wedge with a pressure-release bottom was presented by Buckingham and Tolstoy [Buckingham and Tolstoy 1990 J. Acoust. Soc. Am. 87 1511]. The ideal wedge problem with a rigid bottom is also of great importance in underwater acoustics. We present an analytical solution to the ideal wedge problem with a perfectly reflecting bottom, either rigid or pressure-release, which may be used to provide a means for investigating the sound field in depth-varying channels, and to establish the accuracy of numerical propagation models. Closed-form expressions for coupling matrices are also provided for the ideal waveguides characterized by a ho- mogeneous water column bounded by perfectly reflecting boundaries. A comparison between the analytical solution and the numerical solution recently proposed by Luo et al. [Luo W Y, Yang C M and Zhang R H 2012 Chin. Phys. Lett. 29 014302] is also presented, through which the accuracy of this numerical model is illustrated.展开更多
Wedge-shaped microstructures have the ability to reproduce the excellent adhesive properties of geckos’feet because of their unique anisotropic structure.In particular,the controllability of the wedge-shaped microstr...Wedge-shaped microstructures have the ability to reproduce the excellent adhesive properties of geckos’feet because of their unique anisotropic structure.In particular,the controllability of the wedge-shaped microstructures on adhesion is beneficial to the undisturbed grasp or the capture of space targets.However,the problem currently remains of how to process it efficiently and with high quality.Here a strategy called ultraprecision multistep and layered scribing is proposed for the manufacture of the biomimetic controllable adhesive surface.The results show that the metal master mold prepared based on the manufacturing strategy has not only good surface topography but also high reliability and durability.Furthermore,the controllable adhesive surface of 1.96 cm2,fabricated by the proposed manufacturing strategy,has a normal adhesion of 1.012 N,and the corresponding shear friction and adhesion coefficient are 3.105 N and 4.82,respectively.Additionally,the controllable adhesive surface has been shown to be approximately superhydrophobic and also to possess the properties of controllable adhesion and dynamic adhesion.Also,after 250 adhesion-detachment cycles,the normal adhesion and shear friction only decrease by 5%and 3%,respectively.The research realizes an environmentally friendly and efficient method by which to manufacture a durable metal mold for fabricating a biomimetic controllable adhesive surface,laying a foundation for its effective application in the adherence of space-floating targets.展开更多
文摘Wedge-shaped copper casting experiment was conducted to study the engulfment behavior of TiB2 particle and the interaction between particle or cluster and the solid/liquid front in commercial pure aluminum matrix. The experimental results show that the particle size distribution obeys two separate systems in the whole wedge-cast sample. Furthermore, it is found that the big clusters are pushed to the center of the wedge shaped sample and the single particle or small clusters consisting of few particles are engulfed into the α-Al in the area of the sample edge. The cluster degree of particles varies in different areas, and its value is 0.2 and 0.6 for the cluster fraction in the edge and in the center of the wedge sample, respectively. The cluster diameter does not obey the normal distribution but approximately obeys lognormal distribution in the present work. More importantly, in the whole sample, the particle size obeys two separate log-normal distributions.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11262017,11262012,and 11462020)the Natural Science Foundation of Inner Mongolia Autonomous Region,China(Grant No.2015MS0129)+1 种基金the Programme of Higher-level Talents of Inner Mongolia Normal University(Grant No.RCPY-2-2012-K-035)the Key Project of Inner Mongolia Normal University(Grant No.2014ZD03)
文摘Based on the fundamental equations of piezoelasticity of quasicrystal material,we investigated the interaction between a screw dislocation and a wedge-shaped crack in the piezoelectricity of one-dimensional hexagonal quasicrystals.Explicit analytical solutions are obtained for stress and electric displacement intensity factors of the crack,as well as the force on dislocation.The derivation is based on the conformal mapping method and the perturbation technique.The influences of the wedge angle and dislocation location on the image force are also discussed.The results obtained in this paper can be fully reduced to some special cases already available or deriving new ones.
基金National Science Foundation of China(51605447)Applied Basic Research Programs of Shanxi Province in China(201801D221370)
文摘One wedge-shaped microchannel was established,and the hydrodynamic properties of the wedge-shaped gas film were comprehensively investigated.The Navier-Stokes equations coupled with the full energy equation were adopted to mainly analyze the lubrication hydrodynamics of the gas film,as the horizontal plate was viewed as the adiabatic wall or the horizontal plate temperature was equal to the tilt plate temperature.A higher gas film temperature strengthened the rarefaction effect,and the more rarefied gas weakened the squeeze.Meanwhile,the vertical flow across the gas film could indicate the relation between the velocity vector and the gas film squeeze and expansion.The adiabatic horizontal plate could resist the heat conduction and enhance the rarefaction effect,and thus the direction of motion of the gas molecules was easier to be changed.
基金Supported by the National Natural Science Foundation of China under Grant No 61665007the Natural Science Foundation of Jiangxi Province under Grant No 20161BAB202039
文摘We report some novel dynamical phenomena of dissipative solitons supported by introducing an asymmetric wedge-shaped potential(just as a sharp ‘razor') into the complex Ginzburg–Landau equation with the cubicquintic nonlinearity. The potentials corresponding to a local refractive index modulation with breaking symmetry can be realized in an active optical medium with respective expanding antiwaveguiding structures. Using the razor potential acting on a central dissipative soliton, possible outcomes of asymmetric and single-side splitting of dissipative solitons are achieved with setting different strengths and steepness of the potentials. The results can potentially be used to design a multi-route splitter for light beams.
基金supported by the National ITER Special Support for R&D on Science and Technology for ITER,"Research on Reversed Field Pinch Magnetic Confinement Configuration",CN Schedule Task(No.2011GB106000)
文摘The KTX device is a reversed field pinch (RFP) device currently under construction. Its maximum plasma current is designed as 1 MA with a discharge time longer than 100 ms. Its major radius is 1.4 m and its minor radius is 0.55 m. One of the most important problems in the magnet system design is how to reduce the TF magnetic field ripple and error field. A new wedge- shaped TF coil is put forward for the KTX device and its electromagnetic properties are compared with those of rectangular-shaped TF coils. The error field B,I/Bt of wedge-shaped TF coils with 6.4 degrees is about 6% as compared with 8% in the case of a rectangular-shaped TF coil. Besides, the wedge-shaped TF coils have a lower magnetic field ripple at the edge of the plasma region, which is smaller than 7.5% at R=1.83 m and 2% at R=l.07 m. This means that the tokamak operation mode may be feasible for this device when the plasma area becomes smaller, because the maximum ripple in the plasma area of the tokamak model is always required to be smaller than 0.4%. Detailed analysis of the results shows that the structure of the wedged-shape TF coil is reliable. It can serve as a reference for TF coil design of small aspect ratio RFPs or similar torus devices.
基金supported by the National Natural Science Foundation of China(Grant No.51276046)Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20112302110020)
文摘With the application of supercavitation effect, a novel device named rotational supercavitating evaporator(RSCE) was recently designed for desalination. In order to improve the blade shape of rotational cavitator in RSCE for performance optimization and then design three-dimensional blades, numerical simulations are conducted on the supercavitating flows(with cavitation number ranging from 0.055 to 0.315) around two-dimensional planar symmetric wedge-shaped cavitators with different wedge angles varied from 10 to 180 degrees. Proper numerical method for simulating supercavitating flows around planar symmetric cavitator is established, and assessment of k-ε-v2 -f turbulence model in simulating cavitating flows is conducted. It shows that the size of computational domain would affect the simulation result. Empirical formulae for supercavity dimensions about cavitation number at different wedge angles are obtained, which are of significant importance in the subsequent design of three-dimensional blade. The characteristics of resistance at different wedge angles are discussed, which, together with the characteristics of supercavity dimensions, play important roles in the optimal design of RSCE.
基金Project supported by the National Natural Science Foundation of China (No. 50079025)the National Science and Technology Major Projects of China (No. 2009ZX07424-001)
文摘This laboratory study deals with the hydraulic jump properties for an artificially roughened bed with wedge-shaped baffle blocks. The experiments were conducted for both smooth and rough beds with a Froude number in the range of 3.06≤F1≤10.95 and a relative bed roughness ranging 0.22≤KR≤1.4. The data from this study were compared with those of rectangular baffle blocks. New experimental formulae were developed for determining the sequent depth ratio and the hydraulic jump length in terms of the inflow Froude number and relative bed roughness. Bélanger's jump equation of a rectangular channel was extended to account for the implications of the bed shear stress coefficient attributable to channel bed roughness. It was found that, in comparison with the smooth bed, the wedge-shaped bed roughness reduced the sequent depth of the hydraulic jump by approximately 16.5% to 30% and the hydraulic jump length by approximately 30% to 53%.
文摘The heat transfer in a novel smooth wedge-shaped cooling channel with lateral ejection of turbine blade trailing edge is experimentally investigated in both non-rotating and rotating cases.Beside the conventional inlet at the bottom of the channel, an extra coolant injection from 8 lateral non-equant holes is introduced to improve the overall heat transfer. The total mass flow rate ratio(lateral mass flow rate/total mass flow rate) varies from 0 to 1.0. The major inlet Reynolds number and rotation number respectively vary from 10000 to 20000 and from 0 to 1.16. Experimental results show that the lateral inlet decreases local bulk temperature and increases local heat transfer at the middle and the top of the static channel. In rotating cases, the lateral inlet notably improves the heat transfer at the high-radius half channel and compensates the negative effects induced by the rotation. Both intensity and uniformity of heat transfer inside the channel are enhanced while flow resistance decreases with proper mass flow rate ratio of coolant from two inlets. The most satisfactory total mass flow rate ratio is around 2/3. This new structural style of cooling channel has huge potential and provides new direction of heat transfer of turbine blade trailing edge.
基金supported by the National Natural Science Foundation of China under Grant No.60777005.
文摘The analytical expression for the complex amplitude of light reflected from a wedge-shaped thin film is derived. For plane wave incidence, a simple ray tracing approach is used to calculate Goos-Hanchen (GH) shifts; and for non-plane wave incidence, for example, a Gaussian beam, the angular spectrum approach of plane wave is used in simulation. The two approaches predict that a wedge-shaped thin film can produce large negative longitudinal GH shifts. Although the reflectivity is small near the condition of resonance, the large negative GH shifts can be more easily detected in comparison with the shift from a plane-parallel film in vacuum.
基金supported by the National Natural Science Foundation of China (Nos.12275007, U1867214, 11775004)the funding from the State Key Laboratory of Nuclear Physics and Technology,Peking University,China (No. NPT2021ZZ01)funding from heavy Ion Research Facility,Lanzhou,China (No. HIR2021PY002)。
文摘In this study,we constructed two annular detector arrays comprising 24 wedge-shaped CsI(Tl) crystals,and tested them using anαsource and radioactive beams of ^(14-16) Con a CD_2 target.We compared the properties of a CsI(Tl) crystal encapsulated with various reflectors,revealing that using the 80-μm-thick ESR film to pack the CsI(Tl) crystal yielded the largest light output with the smallest non-uniformity in light output (ΔLO).For the 24 CsI(Tl) detectors with the 80-μm-thick ESR films,the average energy resolution improved as the average light output increased;however,it deteriorated as theΔLO value increased.To form two annular Si-CsI(Tl) telescopes for identifying the light-charged particles,theΔLO value and energy resolution of each CsI(Tl) detector were maintained under 20%and 7.7%,respectively.These telescopes were tested for the first time in a direct nuclear reaction experiment using ^(14-16) C+d.The results demonstrated that the Z=1 and Z=2 charged particles were adequately discriminated by the telescopes using the standardΔE-E method.
文摘Mining-induced fracture zone will be produced in the overlying strata after the coal was mined.In this article,the mining-induced deformation of overlying strata and the time-space evolution law of fissure were studied by the methods of physical simulation and field measurement.The results show that bed separation fissure and vertical fissure will appear in the overlying strata above mining face,which form the wedge-shaped fissure zone.The open degree of fissure depends on the size of uncoordinated deformation between neighbor layers,and the absolute strata sinking controls both the width of bed separation zone and the open degree of vertical breakage fissure.At last,the calculating formula was deducted based on theoretical analysis.
基金Supported by the National Natural Science Foundation of China (51274194, 51004104) the Program for New Century Excellent Talents in University (NCET- 12-0958)
文摘t Research and development of safe and effective control technology of hard roof is an inevitable trend at present. Directional hydraulic fracturing technology is expected to become a safe and effective way to control and manage hard roof. In order to make hard roof fracture in a directional way, a hydraulic fracture field test has been conducted in the third panel district of Tashan Coal Mine in Datong. First, two hydraulic fracturing drilling holes and four observing drilling holes were arranged in the roof, followed by a wedge-shaped ring slot in each hydraulic fracturing drilling hole. The hydraulic fracturing holes were then sealed and, hydraulic fracturing was conducted. The results show that the hard roof is fractured directionally by the hydraulic fracturing function of the two fracturing drilling holes; the sudden drop, or the overall downward trend of hydraulic pressure from hydraulic monitoring is the proof that the rock in the hard roof has been fractured. The required hydraulic pressure to fracture the hard roof in Tashan coal mine, consisting of carboniferous sandstone layer, is 50.09 MPa, and the fracturing radius of a single drilling hole is not less than 10.5 m. The wedge-shaped ring slot made in the bottom of the hydraulic fracturing drilling hole plays a guiding role for crack propagation. After the hydraulic fracturing drill hole is cracked, the propagation of the resulting hydraulic crack, affected mainly by the regional stress field, will turn to other directions.
基金Projects(41371437,61473072,61203214)supported by the National Natural Science Foundation of ChinaProjet(N160404008)supported by the Fundamental Research Funds for the Central Universities,China
文摘At the end of the open-pit mining process in large metal mines, the mining model must change from open-pit mining to underground mining, but the mutual interference between the two mining models leads to poor production safety conditions and difficulties in production convergence during the transition period. To solve these technical problems of poor production safety conditions and difficulties in production convergence during the transition period, in this study, based on the case of the Dagu Mountain Mine, a new transition mode of wedge switching for collaborative mining is proposed and established, which is suitable for collaborative mining. This new mining process completely eliminates the boundary pillar and the artificial covering layer, combining the technology of the mining-induced caving method and the technology of deep mining at the bottom of the open-pit. The results show that 1) the optimization of the open-pit boundary reduces the amount of rock stripping, and 2) it achieves a stable transition of collaborative mining capacity. The study shows that the proposed method uses the technologies of the mining-induced caving method in underground mining and deep mining at the bottom of the open pit in open-pit mining, and the method then optimizes the open-pit mining in detail by comparing the advantages of open-pit mining and underground mining. This study provides true and accurate technical support for the transition from open-pit mining to underground mining.
文摘The solidification behavior of AISI DC 53 cold work tool steel was investigated by means of a cooling curve and its first derivative. Copper and sand wedge-shaped molds were used to obtain various solidification rates. To reveal the cooling rate degree during solidification,the secondary dendrite arm spacing of the steel alloy was examined by scanning electron microscopy(SEM). The solidification rates of each section for both wedge steel samples were calculated by means of the secondary dendrite arm spacing using a research-based empirical relation from the literature. Experiment results revealed that at the tip region of the cast specimen in the copper wedgeshaped mold,the carbide size was 7–8 μm,where the solidification rate was approximately 4,830 °C·s-1. The greatest carbide size obtained in the upper region of the sand cast wedge-shaped specimen was 250–270 μm.
基金financial support should be credited to the National Natural Science Foundation of China (NSFC grant No. 4152249)Basic Research Project of Chinese Academy of Geological Sciences, China Geological Survey (JYWF 20181101)China Geological Survey Project (DD20160910)
文摘In light of multiple field experiments in typical tidal areas with active sea-land interaction, corresponding analysis through hydrodynamic simulation and of ion composition evolution all insist on following conclusions. Due to the tide, the groundwater level is basically in line with its level but with a slight lag. Moreover, smaller amplitude of such changes were always accompanied by greater distance from shores. In this paper, two salt-freshwater interfaces were identified, namely, a large wedge-shaped interface and an inverted U-shaped one located at K5 (monitoring point). The critical hydraulic gradient of saltwater intrusion was between 0.0345 and 0.0377. Apart from that, mathematical and physical models were adopted to measure the influence of tides, showing a inverse proportion to the hydraulic gradient In addition, characteristics of ionic components can prove that K^+ was adsorbed and Ca^2+ was displaced during saline intrusion, while a reverse process was witnessed during desalting. In summary, cation exchange adsorption plus other complex physical chemical effects would take place during saltwater intrusion.
基金supported by the China National Natural Science Foundation (Grant No. 40841010,40972083,41172162)CGS Foundation (Grant No.1212011121268)Foundation from State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation (Grant No. SK-0801)
文摘Longmen Mountain located at the boundary between the Sichuan Basin and Tibetan Plateau,representing the steepest gradient of any edges of the plateau.Three endmember models of uplift process and mechanism have been proposed,including crustal thickening,crustal flow,and crustal isostatic rebound.Here we use coeval sedimentary sequences in the foreland basin to restraint uplift process and mechanism in the Longmen Mountain.The more than 10,000 m thick Late TriassicQuaternary strata filled in this foreland basin and can be divided into six megasequences that are distinguished as two distinct types.The first type is the wedge-shaped megasequences which are sedimentary response of strong active thrust loading events,characterized by a high rate of subsidence and sediment accumulation,coarsening-upward succession and a dual-sourced sediment supply.This type includes Late Triassic,Late Jurassic to Early Cretaceous and Late Cretaceous to Paleogene megasequences.The second type is the tabular megasequences,characterized by the low rate of subsidence and sediment accumulation,finingupward succession,and a single-sourced sediment supply,which is sedimentary response of isostatic rebound and erosion unloading.This type includes the Early to Middle Jurassic,Middle Cretaceous and Neogene to Quaternary megasequences.Basing on sedimentary,active tectonic,geomorphic evidence,we infer that the direction has been reversed from SSWdirected sinistral strike-slip to NNE-directed dextral strike-slip during 40-3.6 Ma,and since 3.6 Ma,the Longmen Mountain thrust belt belong to times of isostatic rebound and erosional unloading with NNEdirected dextral strike-slip.This suggests that crustal isostatic rebound is a primary driver for uplift and topography of the present Longmen Mountain.The Wenchuan(Ms8.0) earthquake,which ruptured a large thrust fault with NNE-directed dextral strikeslip along the range front,is an active manifestation of this crustal isostatic rebound process with dextral strike-slipping and shortening.This process may be the cause for the Wenchuan Earthquake and the apparent paradox of high relief,little shortening,the relative dearth of historical seismicity in the region.
文摘The orientation distribution function of cylindrical particle suspensions was deduced and numerically simulated, and an application was taken in a wedge-shaped flow field. The relationship between the orientation distribution function and particle orientation angles was obtained. The results show that comparing with the most probable angle distribution which comes to being in short time, the distribution of the steady state doesn't vary much. in range; the main difference is the anti-clockwise rotation in the right and upper field, that is, particles rotate more at the points where the velocity gradients are larger. The most probable orientations are close to the direction of local streamlines. In the direction of streamlines, with poleradius decreasing, the most probable angles increase, but the angles between their orientations and the local streamlines decrease.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11125420,11434012,and 41561144006)the Knowledge Innovation Program of the Chinese Academy of Sciences
文摘This paper presents a three-dimensional (3D) coupled-mode model using the direct-global-matrix technique as well as Fourier synthesis. This model is a full wave, two-way three-dimensional model, and is therefore capable of providing ac- curate acoustic field solutions. Because the problem of sound propagation excited by a point source in an ideal wedge with perfectly reflecting boundaries is one of a few three-dimensional problems with analytical solutions, the ideal wedge prob- lem is chosen in this work to validate the presented three-dimensional model. Numerical results show that the field results by analytical solutions and those by the presented model are in excellent agreement, indicating that the presented model can serve as a benchmark model for three-dimensional sound propagation problems involving a planar two-dimensional geometry as well as a point source.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11125420 and 10734100)the Knowledge Innovation Program of the Chinese Academy of Sciences
文摘Sound propagation in a wedge-shaped waveguide with perfectly reflecting boundaries is one of the few range- dependent problems with an analytical solution, and hence provides an ideal benchmark for a full two-way solution to the wave equation. An analytical solution for the sound propagation in an ideal wedge with a pressure-release bottom was presented by Buckingham and Tolstoy [Buckingham and Tolstoy 1990 J. Acoust. Soc. Am. 87 1511]. The ideal wedge problem with a rigid bottom is also of great importance in underwater acoustics. We present an analytical solution to the ideal wedge problem with a perfectly reflecting bottom, either rigid or pressure-release, which may be used to provide a means for investigating the sound field in depth-varying channels, and to establish the accuracy of numerical propagation models. Closed-form expressions for coupling matrices are also provided for the ideal waveguides characterized by a ho- mogeneous water column bounded by perfectly reflecting boundaries. A comparison between the analytical solution and the numerical solution recently proposed by Luo et al. [Luo W Y, Yang C M and Zhang R H 2012 Chin. Phys. Lett. 29 014302] is also presented, through which the accuracy of this numerical model is illustrated.
基金supported by the Major Research Plan of the National Natural Science Foundation of China(Grant No.91848202)。
文摘Wedge-shaped microstructures have the ability to reproduce the excellent adhesive properties of geckos’feet because of their unique anisotropic structure.In particular,the controllability of the wedge-shaped microstructures on adhesion is beneficial to the undisturbed grasp or the capture of space targets.However,the problem currently remains of how to process it efficiently and with high quality.Here a strategy called ultraprecision multistep and layered scribing is proposed for the manufacture of the biomimetic controllable adhesive surface.The results show that the metal master mold prepared based on the manufacturing strategy has not only good surface topography but also high reliability and durability.Furthermore,the controllable adhesive surface of 1.96 cm2,fabricated by the proposed manufacturing strategy,has a normal adhesion of 1.012 N,and the corresponding shear friction and adhesion coefficient are 3.105 N and 4.82,respectively.Additionally,the controllable adhesive surface has been shown to be approximately superhydrophobic and also to possess the properties of controllable adhesion and dynamic adhesion.Also,after 250 adhesion-detachment cycles,the normal adhesion and shear friction only decrease by 5%and 3%,respectively.The research realizes an environmentally friendly and efficient method by which to manufacture a durable metal mold for fabricating a biomimetic controllable adhesive surface,laying a foundation for its effective application in the adherence of space-floating targets.