Anthropogenic induced seismicity has been widely reported and investigated in many regions,including the shale gas fields in the Sichuan basin,where the frequency of earthquakes has increased substantially since the c...Anthropogenic induced seismicity has been widely reported and investigated in many regions,including the shale gas fields in the Sichuan basin,where the frequency of earthquakes has increased substantially since the commencement of fracking in late 2014.However,the details of how earthquakes are induced remain poorly understood,partly due to lack of high-resolution spatial-temporal data documenting the evolution of such seismic events.Most previous studies have been based on a diffusive earthquake catalog constructed by routine methods.Here,however,we have constructed a high resolution catalog using a machine learning detector and waveform cross-correlation.Despite limited data,this new approach has detected one-third more earthquakes and improves the magnitude completeness of the catalog,illuminating the comprehensive spatial-temporal migration of the emerging seismicity in the target area.One of the clusters clearly delineates a potential unmapped fault trace that may have led to the Mw 5.2 in September 2019,by far the largest earthquake recorded in the region.The migration of the seismicity also demonstrates a pore-pressure diffusion front,suggesting additional constraints on the inducing mechanism of the region.The patterns of the highly clustered seismicity reconcile the causal link between the emerging seismicity and the activity of hydraulic fracturing in the region,facilitating continued investigation of the mechanisms of seismic induction and their associated risks.展开更多
Seismic hazard assessment and risk mitigation depend critically on rapid analysis and characterization of earthquake sequences.Increasing seismicity in shale gas blocks of the Sichuan Basin,China,has presented a serio...Seismic hazard assessment and risk mitigation depend critically on rapid analysis and characterization of earthquake sequences.Increasing seismicity in shale gas blocks of the Sichuan Basin,China,has presented a serious challenge to monitoring and managing the seismicity itself.In this study,to detect events we apply a machine-learning-based phase picker(PhaseNet)to continuous seismic data collected between November 2015 and November 2016 from a temporary network covering the Weiyuan Shale Gas Blocks(SGB).Both P-and S-phases are picked and associated for location.We refine the velocity model by using detected explosions and earthquakes and then relocate the detected events using our new velocity model.Our detections and absolute relocations provide the basis for building a high-precision earthquake catalog.Our primary catalog contains about 60 times as many earthquakes as those in the catalog of the Chinese Earthquake Network Center(CENC),which used only the sparsely distributed permanent stations.We also measure the local magnitude and achieve magnitude completeness of ML0.We relocate clusters of events,showing sequential migration patterns overlapping with horizontal well branches around several well pads in the Wei202 and Wei204 blocks.Our results demonstrate the applicability of a machine-learning phase picker to a dense seismic network.The algorithms can facilitate rapid characterization of earthquake sequences.展开更多
Weiyuan shale gas play is characterized by thin high-quality reservoir thickness,big horizontal stress difference,and big productivity differences between wells.Based on integrated evaluation of shale gas reservoir ge...Weiyuan shale gas play is characterized by thin high-quality reservoir thickness,big horizontal stress difference,and big productivity differences between wells.Based on integrated evaluation of shale gas reservoir geology and well logging interpretation of more than 20 appraisal wells,a correlation was built between the single well test production rate and the high-quality reservoir length drilled in the horizontal wells,high-quality reservoir thickness and the stimulation treatment parameters in over 100 horizontal wells,the dominating factors on horizontal well productivity were found out,and optimized development strategies were proposed.The results show that the deployed reserves of high-quality reservoir are the dominating factors on horizontal well productivity.In other words,the shale gas well productivity is controlled by the thickness of the high-quality reservoir,the high-quality reservoir drilling length and the effectiveness of stimulation.Based on the above understanding,the development strategies in Weiyuan shale gas play are optimized as follows:(1)The target of horizontal wells is located in the middle and lower parts of Longyi 11(Wei202 area)and Longyi 11(Wei204 area).(2)Producing wells are drilled in priority in the surrounding areas of Weiyuan county with thick high-quality reservoir.(3)A medium to high intensity stimulation is adopted.After the implementation of these strategies,both the production rate and the estimated ultimate recovery(EUR)of individual shale gas wells have increased substantially.展开更多
According to the chemical composition of thermal water from Geothermal Well DR2010 located in the Weiyuan Geothermal Field of Huzhu County in Qinghai Province, the groundwater recharge, age and geothermal resource pot...According to the chemical composition of thermal water from Geothermal Well DR2010 located in the Weiyuan Geothermal Field of Huzhu County in Qinghai Province, the groundwater recharge, age and geothermal resource potential of the thermal water are discussed by using the methods of Langelier-Ludwig Diagram, isotopic hydrology and geochemical thermometric scale. The analysis results indicate that the Weiyuan Geothermal Field is located in the northern fringe of Xining Basin, where the geothermal water, compared with that located in the central area of Xining Basin, is characterized by greater water yield, shallower buried depth of thermal reservoir and easier exploitation. Due to its active exchange with the modern cold water, the thermal water here shows relatively younger age. These findings provide a hydro-geochemical evidence for the exploitation of Weiyuan Geothermal Field.展开更多
The Weiyuan Structure is the largest surface structure in the Sichuan Basin. However, the abundance of the Dengying Formation gas reservoir in the Weiyuan Structure is low. The height of the gas column is 244 m, but t...The Weiyuan Structure is the largest surface structure in the Sichuan Basin. However, the abundance of the Dengying Formation gas reservoir in the Weiyuan Structure is low. The height of the gas column is 244 m, but the integrated abundance is only 26.4%. After nearly 40 years of exploration, the Gaoshi1 Well and Moxi8 Well yielded gas flows that marked an important exploration success after the discovery of the Sinian Dengying Formation gas reservoir in the Weiyuan Structure, Sichuan Basin, Lower-Paleozoic in 1964. Combined with research examples of oil and gas migration and gas chimneys around the world, the authors used comprehensive geological-geophysical-geochemical research methods to provide a reasonable explanation of the low abundance of the gas reservoir in the Weiyuan Structure based on the surface and subsurface data. The latest research results show that(1) currently, the Weiyuan Structure is the apex of the Dengying Formation in the Mid-Sichuan Basin. The Guang'an, Longnüsi, Gaoshiti-Moxi, and Weiyuan structures are a series of traps in the Dengying Formation with gradual uplifting spill and closure points during the regional uplift of the Himalayan period. The natural gas of the Dengying Formation accumulated in different ways over a wide range and long distance in the Sichuan Basin.(2) At approximately 40 Ma, the Weiyuan area started to uplift and form the present structure, and it is the only outcropped area with the Triassic Jialingjiang Formation and Leikoupo Formation in the surface of the Sichuan Basin(except the steep structural belt in East Sichuan). Caused by the uplift and denudation, the core of the Weiyuan Structure has formed an escaping "skylight" for natural gas. The evidence of a gas chimney includes(1) the component percentage of non-hydrocarbon gas, which decreased from the bottom to the top,(2) the pressure coefficient is normal because the gas reservoir from the Upper Sinian to the Lower Permian commonly have a normal pressure coefficient(an average of 1.0), and(3) the isotope geochemistry of the argon mostly represents abiogenic characteristics of a deep source, and the 40 Ar/36 Ar ratio is as high as 2 855–5 222 in the Upper Permian. All of these characteristics provide sufficient evidence for a gas chimney effect. The characteristics of low abundance in the Weiyuan Structure can be a reference example for studying the late reconstruction of deep oil and gas reservoirs in the superimposed basins of western China.展开更多
As a key factor restricting the fracturing effect of shale reservoir,the origin and content of quartz components have always been the focus of academic and industrial circles.Due to the great influence of diagenesis p...As a key factor restricting the fracturing effect of shale reservoir,the origin and content of quartz components have always been the focus of academic and industrial circles.Due to the great influence of diagenesis process,the accuracy of trace element determination to identify the origin of quartz is not good,which can not meet the increasingly accurate research requirements.In this paper,mineral quantitative analysis technology(QemScan)is used to identify quartz components by two-dimensional quantitative scanning,and the content data of quartz components with different grain sizes are extracted.The results show that the size of quartz particles is obviously controlled by the difference of sedimentary water and sedimentary environment,that is,quartz particles less than 30 mm are mainly concentrated in Long112 and Long114 layers,which is the normal oxygen environment under the background of medium retention in deep water environment;quartz particles larger than 20 mm are mainly concentrated in Long111 and Long113 layers,which is the poor oxygen environment under the background of strong retention in deep water environment.In shallow water environment,the stronger hydrodynamic conditions make the strata rich in terrigenous clastic quartz particles with larger grain size,and oxygen poor environment is conducive to the enrichment of authigenic quartz with smaller grain size.展开更多
To quantitatively characterize the horizontal shale gas well productivity and identify the dominant productivity factors in the Weiyuan Shale Gas Field,Sichuan Basin,a practical productivity method involving multiple ...To quantitatively characterize the horizontal shale gas well productivity and identify the dominant productivity factors in the Weiyuan Shale Gas Field,Sichuan Basin,a practical productivity method involving multiple indicators was proposed to analyze the production performance of 150 horizontal wells.The normalized test production,flowback ratio,first-year initial production and estimated/expected ultimate recovery(EUR)were introduced to estimate the well productivity in different production stages.The correlation between these four indicators was determined to reveal their effects on production performance forecasts.In addition,the dominant productivity factors in the present stage were identified to provide guidance for production performance enhancement.Research indicates that favorable linear relations exist between the normalized test production,first-year initial production and EUR.The normalized test production is regarded as an important indicator to preliminarily characterize the well productivity in the initial stage.The first-year initial production is the most accurate productivity evaluation indicator after a year.The flowback ratio is a supplementary indicator that qualitatively represents the well productivity and fracturing performance.The well productivity is greatly dependent on the lateral target interval,drilling length of Longmaxi1_(1)^(1)(LM1_(1)^(1))and wellbore integrity.The first-year recovery degree of EUR is 24%–58%with a P50 value of 35%.展开更多
The Sinian Dengying Formation gas pool in Weiyuan is the oldest large-scale sulfur-bearing gas field in China, which has a H2S content ranging from 0.8% to 1.4%. The Cambrian Xixiangchi Formation gas pool discovered r...The Sinian Dengying Formation gas pool in Weiyuan is the oldest large-scale sulfur-bearing gas field in China, which has a H2S content ranging from 0.8% to 1.4%. The Cambrian Xixiangchi Formation gas pool discovered recently above the Dengying Formation contains gas geochemical behaviors similar to those of Dengying Formation but different in sulfur isotopes of H2S. Investigations show that though these two Sinian and Cambrian gas pools are separate ones, they share the same Cambrian source rock. The higher dry coefficient, heavier carbon isotopes, sulfur isotopes of sulfide, lower filling of gas pools, formation water characteristics, reservoir properties and H2S distribution, indicate that H2S in both the Sinian and Cambrian gas pools originates from TSR. The sulfur isotopes of sulfates have shown that H2S was formed in respective pools, namely hydrocarbons charged into the pools reacted with the Dengying Formation and the Xixiangchi Formation gypsum (TSR), respectively, to form H2S. Compared with sulfur isotopes of sulfates in each pool, δ34S values of H2S are 8‰ lighter for the Dengying Formation pool and 12‰ lighter for the Xixiangchi Formation pool, respectively, which is attributed to the difference in temperatures of TSR occurrence. The reservoir temperature of the Xixiangchi Formation pool is about 40℃ lower than that of the Dengying Formation pool. Temperature plays a controlling role in both the sulfur isotopic fractionation and amounts of H2S generation during TSR.展开更多
基金supported by the National Key R&D Program of China(2018YFC1504501)the Hong Kong Research Grants Council(No.14303721 and N_CUHK430/16)the Faculty of Science,CUHK。
文摘Anthropogenic induced seismicity has been widely reported and investigated in many regions,including the shale gas fields in the Sichuan basin,where the frequency of earthquakes has increased substantially since the commencement of fracking in late 2014.However,the details of how earthquakes are induced remain poorly understood,partly due to lack of high-resolution spatial-temporal data documenting the evolution of such seismic events.Most previous studies have been based on a diffusive earthquake catalog constructed by routine methods.Here,however,we have constructed a high resolution catalog using a machine learning detector and waveform cross-correlation.Despite limited data,this new approach has detected one-third more earthquakes and improves the magnitude completeness of the catalog,illuminating the comprehensive spatial-temporal migration of the emerging seismicity in the target area.One of the clusters clearly delineates a potential unmapped fault trace that may have led to the Mw 5.2 in September 2019,by far the largest earthquake recorded in the region.The migration of the seismicity also demonstrates a pore-pressure diffusion front,suggesting additional constraints on the inducing mechanism of the region.The patterns of the highly clustered seismicity reconcile the causal link between the emerging seismicity and the activity of hydraulic fracturing in the region,facilitating continued investigation of the mechanisms of seismic induction and their associated risks.
基金supported by the Hong Kong Research Grants Council(No.14303721 and N_CUHK430/16)Faculty of Science,CUHK,National Natural Science Foundation of China(Grants No.41804015,41661164035)+1 种基金National Key R&D Program of China(2018YFC1504501-02)by the Stanford Center for Induced and Triggered Seismicity。
文摘Seismic hazard assessment and risk mitigation depend critically on rapid analysis and characterization of earthquake sequences.Increasing seismicity in shale gas blocks of the Sichuan Basin,China,has presented a serious challenge to monitoring and managing the seismicity itself.In this study,to detect events we apply a machine-learning-based phase picker(PhaseNet)to continuous seismic data collected between November 2015 and November 2016 from a temporary network covering the Weiyuan Shale Gas Blocks(SGB).Both P-and S-phases are picked and associated for location.We refine the velocity model by using detected explosions and earthquakes and then relocate the detected events using our new velocity model.Our detections and absolute relocations provide the basis for building a high-precision earthquake catalog.Our primary catalog contains about 60 times as many earthquakes as those in the catalog of the Chinese Earthquake Network Center(CENC),which used only the sparsely distributed permanent stations.We also measure the local magnitude and achieve magnitude completeness of ML0.We relocate clusters of events,showing sequential migration patterns overlapping with horizontal well branches around several well pads in the Wei202 and Wei204 blocks.Our results demonstrate the applicability of a machine-learning phase picker to a dense seismic network.The algorithms can facilitate rapid characterization of earthquake sequences.
文摘Weiyuan shale gas play is characterized by thin high-quality reservoir thickness,big horizontal stress difference,and big productivity differences between wells.Based on integrated evaluation of shale gas reservoir geology and well logging interpretation of more than 20 appraisal wells,a correlation was built between the single well test production rate and the high-quality reservoir length drilled in the horizontal wells,high-quality reservoir thickness and the stimulation treatment parameters in over 100 horizontal wells,the dominating factors on horizontal well productivity were found out,and optimized development strategies were proposed.The results show that the deployed reserves of high-quality reservoir are the dominating factors on horizontal well productivity.In other words,the shale gas well productivity is controlled by the thickness of the high-quality reservoir,the high-quality reservoir drilling length and the effectiveness of stimulation.Based on the above understanding,the development strategies in Weiyuan shale gas play are optimized as follows:(1)The target of horizontal wells is located in the middle and lower parts of Longyi 11(Wei202 area)and Longyi 11(Wei204 area).(2)Producing wells are drilled in priority in the surrounding areas of Weiyuan county with thick high-quality reservoir.(3)A medium to high intensity stimulation is adopted.After the implementation of these strategies,both the production rate and the estimated ultimate recovery(EUR)of individual shale gas wells have increased substantially.
基金funded by Science and Technology Project Subsidized by Central Budget (2009-840)
文摘According to the chemical composition of thermal water from Geothermal Well DR2010 located in the Weiyuan Geothermal Field of Huzhu County in Qinghai Province, the groundwater recharge, age and geothermal resource potential of the thermal water are discussed by using the methods of Langelier-Ludwig Diagram, isotopic hydrology and geochemical thermometric scale. The analysis results indicate that the Weiyuan Geothermal Field is located in the northern fringe of Xining Basin, where the geothermal water, compared with that located in the central area of Xining Basin, is characterized by greater water yield, shallower buried depth of thermal reservoir and easier exploitation. Due to its active exchange with the modern cold water, the thermal water here shows relatively younger age. These findings provide a hydro-geochemical evidence for the exploitation of Weiyuan Geothermal Field.
基金financially supported by the Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technologythe 973 Program of China (No. 2012CB214805)+1 种基金the SINOPEC research project (No. P16109)the National Science and Technology Major Project of China (No. 2017ZX05005003-007)
文摘The Weiyuan Structure is the largest surface structure in the Sichuan Basin. However, the abundance of the Dengying Formation gas reservoir in the Weiyuan Structure is low. The height of the gas column is 244 m, but the integrated abundance is only 26.4%. After nearly 40 years of exploration, the Gaoshi1 Well and Moxi8 Well yielded gas flows that marked an important exploration success after the discovery of the Sinian Dengying Formation gas reservoir in the Weiyuan Structure, Sichuan Basin, Lower-Paleozoic in 1964. Combined with research examples of oil and gas migration and gas chimneys around the world, the authors used comprehensive geological-geophysical-geochemical research methods to provide a reasonable explanation of the low abundance of the gas reservoir in the Weiyuan Structure based on the surface and subsurface data. The latest research results show that(1) currently, the Weiyuan Structure is the apex of the Dengying Formation in the Mid-Sichuan Basin. The Guang'an, Longnüsi, Gaoshiti-Moxi, and Weiyuan structures are a series of traps in the Dengying Formation with gradual uplifting spill and closure points during the regional uplift of the Himalayan period. The natural gas of the Dengying Formation accumulated in different ways over a wide range and long distance in the Sichuan Basin.(2) At approximately 40 Ma, the Weiyuan area started to uplift and form the present structure, and it is the only outcropped area with the Triassic Jialingjiang Formation and Leikoupo Formation in the surface of the Sichuan Basin(except the steep structural belt in East Sichuan). Caused by the uplift and denudation, the core of the Weiyuan Structure has formed an escaping "skylight" for natural gas. The evidence of a gas chimney includes(1) the component percentage of non-hydrocarbon gas, which decreased from the bottom to the top,(2) the pressure coefficient is normal because the gas reservoir from the Upper Sinian to the Lower Permian commonly have a normal pressure coefficient(an average of 1.0), and(3) the isotope geochemistry of the argon mostly represents abiogenic characteristics of a deep source, and the 40 Ar/36 Ar ratio is as high as 2 855–5 222 in the Upper Permian. All of these characteristics provide sufficient evidence for a gas chimney effect. The characteristics of low abundance in the Weiyuan Structure can be a reference example for studying the late reconstruction of deep oil and gas reservoirs in the superimposed basins of western China.
基金This work was supported in part by National Natural Science Foundation of China(No.51804038)PetroChina Innovation Foundation(No.2018D-5007-0210)+1 种基金Innovation and entrepreneurship training program for college students in Hubei Province(S202010489032)Innovation and entrepreneurship project for college students of Yangtze University(2019026).
文摘As a key factor restricting the fracturing effect of shale reservoir,the origin and content of quartz components have always been the focus of academic and industrial circles.Due to the great influence of diagenesis process,the accuracy of trace element determination to identify the origin of quartz is not good,which can not meet the increasingly accurate research requirements.In this paper,mineral quantitative analysis technology(QemScan)is used to identify quartz components by two-dimensional quantitative scanning,and the content data of quartz components with different grain sizes are extracted.The results show that the size of quartz particles is obviously controlled by the difference of sedimentary water and sedimentary environment,that is,quartz particles less than 30 mm are mainly concentrated in Long112 and Long114 layers,which is the normal oxygen environment under the background of medium retention in deep water environment;quartz particles larger than 20 mm are mainly concentrated in Long111 and Long113 layers,which is the poor oxygen environment under the background of strong retention in deep water environment.In shallow water environment,the stronger hydrodynamic conditions make the strata rich in terrigenous clastic quartz particles with larger grain size,and oxygen poor environment is conducive to the enrichment of authigenic quartz with smaller grain size.
基金the National S&T Major Project of China(No.2017ZX05035004-005)for their support.
文摘To quantitatively characterize the horizontal shale gas well productivity and identify the dominant productivity factors in the Weiyuan Shale Gas Field,Sichuan Basin,a practical productivity method involving multiple indicators was proposed to analyze the production performance of 150 horizontal wells.The normalized test production,flowback ratio,first-year initial production and estimated/expected ultimate recovery(EUR)were introduced to estimate the well productivity in different production stages.The correlation between these four indicators was determined to reveal their effects on production performance forecasts.In addition,the dominant productivity factors in the present stage were identified to provide guidance for production performance enhancement.Research indicates that favorable linear relations exist between the normalized test production,first-year initial production and EUR.The normalized test production is regarded as an important indicator to preliminarily characterize the well productivity in the initial stage.The first-year initial production is the most accurate productivity evaluation indicator after a year.The flowback ratio is a supplementary indicator that qualitatively represents the well productivity and fracturing performance.The well productivity is greatly dependent on the lateral target interval,drilling length of Longmaxi1_(1)^(1)(LM1_(1)^(1))and wellbore integrity.The first-year recovery degree of EUR is 24%–58%with a P50 value of 35%.
基金Supported by the National Natural Science Foundation of China (Grant No. 40602016)the National Basic Research Project (Grant No. 2001CB209100)
文摘The Sinian Dengying Formation gas pool in Weiyuan is the oldest large-scale sulfur-bearing gas field in China, which has a H2S content ranging from 0.8% to 1.4%. The Cambrian Xixiangchi Formation gas pool discovered recently above the Dengying Formation contains gas geochemical behaviors similar to those of Dengying Formation but different in sulfur isotopes of H2S. Investigations show that though these two Sinian and Cambrian gas pools are separate ones, they share the same Cambrian source rock. The higher dry coefficient, heavier carbon isotopes, sulfur isotopes of sulfide, lower filling of gas pools, formation water characteristics, reservoir properties and H2S distribution, indicate that H2S in both the Sinian and Cambrian gas pools originates from TSR. The sulfur isotopes of sulfates have shown that H2S was formed in respective pools, namely hydrocarbons charged into the pools reacted with the Dengying Formation and the Xixiangchi Formation gypsum (TSR), respectively, to form H2S. Compared with sulfur isotopes of sulfates in each pool, δ34S values of H2S are 8‰ lighter for the Dengying Formation pool and 12‰ lighter for the Xixiangchi Formation pool, respectively, which is attributed to the difference in temperatures of TSR occurrence. The reservoir temperature of the Xixiangchi Formation pool is about 40℃ lower than that of the Dengying Formation pool. Temperature plays a controlling role in both the sulfur isotopic fractionation and amounts of H2S generation during TSR.