This study investigates the application of the two-parameter Weibull distribution in modeling state holding times within HIV/AIDS progression dynamics. By comparing the performance of the Weibull-based Accelerated Fai...This study investigates the application of the two-parameter Weibull distribution in modeling state holding times within HIV/AIDS progression dynamics. By comparing the performance of the Weibull-based Accelerated Failure Time (AFT) model, Cox Proportional Hazards model, and Survival model, we assess the effectiveness of these models in capturing survival rates across varying gender, age groups, and treatment categories. Simulated data was used to fit the models, with model identification criteria (AIC, BIC, and R2) applied for evaluation. Results indicate that the AFT model is particularly sensitive to interaction terms, showing significant effects for older age groups (50 - 60 years) and treatment interaction, while the Cox model provides a more stable fit across all age groups. The Survival model displayed variability, with its performance diminishing when interaction terms were introduced, particularly in older age groups. Overall, while the AFT model captures the complexities of interactions in the data, the Cox model’s stability suggests it may be better suited for general analyses without strong interaction effects. The findings highlight the importance of model selection in survival analysis, especially in complex disease progression scenarios like HIV/AIDS.展开更多
基金Supported by the National Natural Science Foundation of China(12171335,12301603)the Science Development Project of Sichuan University(2020SCUNL201)the Scientific Foundation of Nanjing University of Posts and Telecommunications(NY221026)。
文摘This study investigates the application of the two-parameter Weibull distribution in modeling state holding times within HIV/AIDS progression dynamics. By comparing the performance of the Weibull-based Accelerated Failure Time (AFT) model, Cox Proportional Hazards model, and Survival model, we assess the effectiveness of these models in capturing survival rates across varying gender, age groups, and treatment categories. Simulated data was used to fit the models, with model identification criteria (AIC, BIC, and R2) applied for evaluation. Results indicate that the AFT model is particularly sensitive to interaction terms, showing significant effects for older age groups (50 - 60 years) and treatment interaction, while the Cox model provides a more stable fit across all age groups. The Survival model displayed variability, with its performance diminishing when interaction terms were introduced, particularly in older age groups. Overall, while the AFT model captures the complexities of interactions in the data, the Cox model’s stability suggests it may be better suited for general analyses without strong interaction effects. The findings highlight the importance of model selection in survival analysis, especially in complex disease progression scenarios like HIV/AIDS.