Based on statistics principle,random error and systematic error were considered and the volumetric properties of the two mixtures types,namely A and B,were statistically analyzed using different distribution methods.S...Based on statistics principle,random error and systematic error were considered and the volumetric properties of the two mixtures types,namely A and B,were statistically analyzed using different distribution methods.Seventy-two samples of mixture A and fifty-two of mixture B were fabricated using the Marshall method.The probability distributions were compared on the basis of goodness of fit.Weibull model was found to be most appropriate model for describing the asphalt mixtures volumetric properties distribution.The two-parameter Weibull distribution function applied well to model the bulk specific gravity and voids filled with asphalt data,whereas,the three-parameter Weibull distribution appeared to be more appropriate in the discussing of air voids and voids in mineral aggregate.The experimetal results is revealed that compared with the mean value,the peak value of Weibull distribution was suggested as an alternative and more powerful parameter for describing the test data distribution characteristic.The analysis of test results also revealed that there were significant differences in the volumetric properties of the two tested mixtures for the same confidence level.The confidence interval decreased with the decreasing in reliability.展开更多
It has widely been acknowledged that no structures can be designed to be risk free, and therefore reliability analysis plays an essential role in the design of engineering structures. The recent focus has been placed ...It has widely been acknowledged that no structures can be designed to be risk free, and therefore reliability analysis plays an essential role in the design of engineering structures. The recent focus has been placed on structures made of brittle heterogenous(a.k.a. quasibrittle) materials, such as ceramics, composites, concrete, rock, cold asphalt mixture, and many more at the microscale. This paper presents a level excursion model for the analysis of probabilistic failure of quasibrittle structures, in which the failure statistics is calculated as a first passage probability. The model captures both the spatial randomness of local material resistance and the random stress field induced by microstructures(e.g. randomly distributed flaws). The model represents a generalization of the classical weakest-link model at the continuum limit and it recovers the classical Weibull distribution as an asymptotic distribution function. The paper discusses two applications of the model. The model is first applied to the strength distribution of polycrystalline silicon(poly-Si) MEMS specimens. It is shown that the model agrees well with the experimentally measured strength distributions of poly-Si MEMS specimens of different sizes. The model predicts a complete size effect curve of the mean structural strength transitioning from a vanishing size effect at the small-size limit to the classical Weibull size effect at the large-size limit. The second application is concerned with the left tail of strength distribution of quasibrittle structures.By taking into account both random stress and strength fields, the model is used to investigate the origin of the power-law tail distribution of structural strength.展开更多
基金Funded by the National Natural Science Foundation of China (No. S50778057) the Research Fund for the Doctoral Program of Higher Education (No. 20060213002)
文摘Based on statistics principle,random error and systematic error were considered and the volumetric properties of the two mixtures types,namely A and B,were statistically analyzed using different distribution methods.Seventy-two samples of mixture A and fifty-two of mixture B were fabricated using the Marshall method.The probability distributions were compared on the basis of goodness of fit.Weibull model was found to be most appropriate model for describing the asphalt mixtures volumetric properties distribution.The two-parameter Weibull distribution function applied well to model the bulk specific gravity and voids filled with asphalt data,whereas,the three-parameter Weibull distribution appeared to be more appropriate in the discussing of air voids and voids in mineral aggregate.The experimetal results is revealed that compared with the mean value,the peak value of Weibull distribution was suggested as an alternative and more powerful parameter for describing the test data distribution characteristic.The analysis of test results also revealed that there were significant differences in the volumetric properties of the two tested mixtures for the same confidence level.The confidence interval decreased with the decreasing in reliability.
基金supported by the U.S. National Science Foundation (Grant No. CMMI-1361868)。
文摘It has widely been acknowledged that no structures can be designed to be risk free, and therefore reliability analysis plays an essential role in the design of engineering structures. The recent focus has been placed on structures made of brittle heterogenous(a.k.a. quasibrittle) materials, such as ceramics, composites, concrete, rock, cold asphalt mixture, and many more at the microscale. This paper presents a level excursion model for the analysis of probabilistic failure of quasibrittle structures, in which the failure statistics is calculated as a first passage probability. The model captures both the spatial randomness of local material resistance and the random stress field induced by microstructures(e.g. randomly distributed flaws). The model represents a generalization of the classical weakest-link model at the continuum limit and it recovers the classical Weibull distribution as an asymptotic distribution function. The paper discusses two applications of the model. The model is first applied to the strength distribution of polycrystalline silicon(poly-Si) MEMS specimens. It is shown that the model agrees well with the experimentally measured strength distributions of poly-Si MEMS specimens of different sizes. The model predicts a complete size effect curve of the mean structural strength transitioning from a vanishing size effect at the small-size limit to the classical Weibull size effect at the large-size limit. The second application is concerned with the left tail of strength distribution of quasibrittle structures.By taking into account both random stress and strength fields, the model is used to investigate the origin of the power-law tail distribution of structural strength.