期刊文献+
共找到46篇文章
< 1 2 3 >
每页显示 20 50 100
A partial least-squares regression approach to land use studies in the Suzhou-Wuxi-Changzhou region 被引量:1
1
作者 ZHANG Yang ZHOU Chenghu ZHANG Yongmin 《Journal of Geographical Sciences》 SCIE CSCD 2007年第2期234-244,共11页
In several LUCC studies, statistical methods are being used to analyze land use data. A problem using conventional statistical methods in land use analysis is that these methods assume the data to be statistically ind... In several LUCC studies, statistical methods are being used to analyze land use data. A problem using conventional statistical methods in land use analysis is that these methods assume the data to be statistically independent. But in fact, they have the tendency to be dependent, a phenomenon known as multicollinearity, especially in the cases of few observations. In this paper, a Partial Least-Squares (PLS) regression approach is developed to study relationships between land use and its influencing factors through a case study of the Suzhou-Wuxi-Changzhou region in China. Multicollinearity exists in the dataset and the number of variables is high compared to the number of observations. Four PLS factors are selected through a preliminary analysis. The correlation analyses between land use and influencing factors demonstrate the land use character of rural industrialization and urbanization in the Suzhou-Wuxi-Changzhou region, meanwhile illustrate that the first PLS factor has enough ability to best describe land use patterns quantitatively, and most of the statistical relations derived from it accord with the fact. By the decreasing capacity of the PLS factors, the reliability of model outcome decreases correspondingly. 展开更多
关键词 land use multivariate data analysis partial least-squares regression Suzhou-Wuxi-Changzhou region MULTICOLLINEARITY
下载PDF
PARTIAL LEAST-SQUARES(PLS)REGRESSION AND SPECTROPHOTOMETRY AS APPLIED TO THE ANALYSIS OF MULTICOMPONENT MIXTURES
2
作者 Xin An LIU Le Ming SHI +4 位作者 Zhi Hong XU Zhong Xiao PAN Zhi Liang LI Ying GAO Laboratory No.502,Institute of Chemical Defense,Beijing 102205 Laboratory of Computer Chemistry,Institute of Chemical Metallurgy,Chinese Academy of Sciences,Beijing 100080 《Chinese Chemical Letters》 SCIE CAS CSCD 1991年第3期233-236,共4页
The UV absorption spectra of o-naphthol,α-naphthylamine,2,7-dihydroxy naphthalene,2,4-dimethoxy ben- zaldehyde and methyl salicylate,overlap severely;therefore it is impossible to determine them in mixtures by tradit... The UV absorption spectra of o-naphthol,α-naphthylamine,2,7-dihydroxy naphthalene,2,4-dimethoxy ben- zaldehyde and methyl salicylate,overlap severely;therefore it is impossible to determine them in mixtures by traditional spectrophotometric methods.In this paper,the partial least-squares(PLS)regression is applied to the simultaneous determination of these compounds in mixtures by UV spectrophtometry without any pretreatment of the samples.Ten synthetic mixture samples are analyzed by the proposed method.The mean recoveries are 99.4%,996%,100.2%,99.3% and 99.1%,and the relative standard deviations(RSD) are 1.87%,1.98%,1.94%,0.960% and 0.672%,respectively. 展开更多
关键词 PLS)regression AND SPECTROPHOTOMETRY AS APPLIED TO THE ANALYSIS OF MULTICOMPONENT MIXTURES PARTIAL least-squares AS
下载PDF
Characterizing and estimating rice brown spot disease severity using stepwise regression,principal component regression and partial least-square regression 被引量:13
3
作者 LIU Zhan-yu1, HUANG Jing-feng1, SHI Jing-jing1, TAO Rong-xiang2, ZHOU Wan3, ZHANG Li-li3 (1Institute of Agriculture Remote Sensing and Information System Application, Zhejiang University, Hangzhou 310029, China) (2Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China) (3Plant Inspection Station of Hangzhou City, Hangzhou 310020, China) 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2007年第10期738-744,共7页
Detecting plant health conditions plays a key role in farm pest management and crop protection. In this study, measurement of hyperspectral leaf reflectance in rice crop (Oryzasativa L.) was conducted on groups of hea... Detecting plant health conditions plays a key role in farm pest management and crop protection. In this study, measurement of hyperspectral leaf reflectance in rice crop (Oryzasativa L.) was conducted on groups of healthy and infected leaves by the fungus Bipolaris oryzae (Helminthosporium oryzae Breda. de Hann) through the wavelength range from 350 to 2 500 nm. The percentage of leaf surface lesions was estimated and defined as the disease severity. Statistical methods like multiple stepwise regression, principal component analysis and partial least-square regression were utilized to calculate and estimate the disease severity of rice brown spot at the leaf level. Our results revealed that multiple stepwise linear regressions could efficiently estimate disease severity with three wavebands in seven steps. The root mean square errors (RMSEs) for training (n=210) and testing (n=53) dataset were 6.5% and 5.8%, respectively. Principal component analysis showed that the first principal component could explain approximately 80% of the variance of the original hyperspectral reflectance. The regression model with the first two principal components predicted a disease severity with RMSEs of 16.3% and 13.9% for the training and testing dataset, respec-tively. Partial least-square regression with seven extracted factors could most effectively predict disease severity compared with other statistical methods with RMSEs of 4.1% and 2.0% for the training and testing dataset, respectively. Our research demon-strates that it is feasible to estimate the disease severity of rice brown spot using hyperspectral reflectance data at the leaf level. 展开更多
关键词 HYPERSPECTRAL reflectance Rice BROWN SPOT PARTIAL least-square (PLS) regression STEPWISE regression Principal component regression (PCR)
下载PDF
Partial least squares regression for predicting economic loss of vegetables caused by acid rain 被引量:2
4
作者 王菊 房春生 《Journal of Chongqing University》 CAS 2009年第1期10-16,共7页
To predict the economic loss of crops caused by acid rain,we used partial least squares(PLS) regression to build a model of single dependent variable -the economic loss calculated with the decrease in yield related to... To predict the economic loss of crops caused by acid rain,we used partial least squares(PLS) regression to build a model of single dependent variable -the economic loss calculated with the decrease in yield related to the pH value and levels of Ca2+,NH4+,Na+,K+,Mg2+,SO42-,NO3-,and Cl-in acid rain. We selected vegetables which were sensitive to acid rain as the sample crops,and collected 12 groups of data,of which 8 groups were used for modeling and 4 groups for testing. Using the cross validation method to evaluate the performace of this prediction model indicates that the optimum number of principal components was 3,determined by the minimum of prediction residual error sum of squares,and the prediction error of the regression equation ranges from -2.25% to 4.32%. The model predicted that the economic loss of vegetables from acid rain is negatively corrrelated to pH and the concentrations of NH4+,SO42-,NO3-,and Cl-in the rain,and positively correlated to the concentrations of Ca2+,Na+,K+ and Mg2+. The precision of the model may be improved if the non-linearity of original data is addressed. 展开更多
关键词 acid rain partial least-squares regression economic loss dose-response model
下载PDF
Linear Maximum Likelihood Regression Analysis for Untransformed Log-Normally Distributed Data
5
作者 Sara M. Gustavsson Sandra Johannesson +1 位作者 Gerd Sallsten Eva M. Andersson 《Open Journal of Statistics》 2012年第4期389-400,共12页
Medical research data are often skewed and heteroscedastic. It has therefore become practice to log-transform data in regression analysis, in order to stabilize the variance. Regression analysis on log-transformed dat... Medical research data are often skewed and heteroscedastic. It has therefore become practice to log-transform data in regression analysis, in order to stabilize the variance. Regression analysis on log-transformed data estimates the relative effect, whereas it is often the absolute effect of a predictor that is of interest. We propose a maximum likelihood (ML)-based approach to estimate a linear regression model on log-normal, heteroscedastic data. The new method was evaluated with a large simulation study. Log-normal observations were generated according to the simulation models and parameters were estimated using the new ML method, ordinary least-squares regression (LS) and weighed least-squares regression (WLS). All three methods produced unbiased estimates of parameters and expected response, and ML and WLS yielded smaller standard errors than LS. The approximate normality of the Wald statistic, used for tests of the ML estimates, in most situations produced correct type I error risk. Only ML and WLS produced correct confidence intervals for the estimated expected value. ML had the highest power for tests regarding β1. 展开更多
关键词 HETEROSCEDASTICITY MAXIMUM LIKELIHOOD Estimation LINEAR regression Model Log-Normal Distribution weighed least-squares regression
下载PDF
High-Dimensional Regression on Sparse Grids Applied to Pricing Moving Window Asian Options
6
作者 Stefan Dirnstorfer Andreas J. Grau Rudi Zagst 《Open Journal of Statistics》 2013年第6期427-440,共14页
The pricing of moving window Asian option with an early exercise feature is considered a challenging problem in option pricing. The computational challenge lies in the unknown optimal exercise strategy and in the high... The pricing of moving window Asian option with an early exercise feature is considered a challenging problem in option pricing. The computational challenge lies in the unknown optimal exercise strategy and in the high dimensionality required for approximating the early exercise boundary. We use sparse grid basis functions in the Least Squares Monte Carlo approach to solve this “curse of dimensionality” problem. The resulting algorithm provides a general and convergent method for pricing moving window Asian options. The sparse grid technique presented in this paper can be generalized to pricing other high-dimensional, early-exercisable derivatives. 展开更多
关键词 Sparse Grid regression least-squares Monte Carlo MOVING WINDOW Asian OPTION
下载PDF
Regression Analysis of a Kind of Trapezoidal Fuzzy Numbers Based on a Shape Preserving Operator
7
作者 Jie Sun Qiujun Lu 《Journal of Data Analysis and Information Processing》 2017年第3期96-114,共19页
Fuzzy regression provides more approaches for us to deal with imprecise or vague problems. Traditional fuzzy regression is established on triangular fuzzy numbers, which can be represented by trapezoidal numbers. The ... Fuzzy regression provides more approaches for us to deal with imprecise or vague problems. Traditional fuzzy regression is established on triangular fuzzy numbers, which can be represented by trapezoidal numbers. The independent variables, coefficients of independent variables and dependent variable in the regression model are fuzzy numbers in different times and TW, the shape preserving operator, is the only T-norm which induces a shape preserving multiplication of LL-type of fuzzy numbers. So, in this paper, we propose a new fuzzy regression model based on LL-type of trapezoidal fuzzy numbers and TW. Firstly, we introduce the basic fuzzy set theories, the basic arithmetic propositions of the shape preserving operator and a new distance measure between trapezoidal numbers. Secondly, we investigate the specific model algorithms for FIFCFO model (fuzzy input-fuzzy coefficient-fuzzy output model) and introduce three advantages of fit criteria, Error Index, Similarity Measure and Distance Criterion. Thirdly, we use a design set and two reference sets to make a comparison between our proposed model and the reference models and determine their goodness with the above three criteria. Finally, we draw the conclusion that our proposed model is reasonable and has better prediction accuracy, but short of robust, comparing to the reference models by the three goodness of fit criteria. So, we can expand our traditional fuzzy regression model to our proposed new model. 展开更多
关键词 FUZZY Sets LL-Type of Trapezoidal FUZZY NUMBERS least-squares DEVIATIONS Shape Preserving OPERATOR FUZZY Linear regression
下载PDF
Fuzzy Varying Coefficient Bilinear Regression of Yield Series
8
作者 Ting He Qiujun Lu 《Journal of Data Analysis and Information Processing》 2015年第3期43-54,共12页
We construct a fuzzy varying coefficient bilinear regression model to deal with the interval financial data and then adopt the least-squares method based on symmetric fuzzy number space. Firstly, we propose a varying ... We construct a fuzzy varying coefficient bilinear regression model to deal with the interval financial data and then adopt the least-squares method based on symmetric fuzzy number space. Firstly, we propose a varying coefficient model on the basis of the fuzzy bilinear regression model. Secondly, we develop the least-squares method according to the complete distance between fuzzy numbers to estimate the coefficients and test the adaptability of the proposed model by means of generalized likelihood ratio test with SSE composite index. Finally, mean square errors and mean absolutely errors are employed to evaluate and compare the fitting of fuzzy auto regression, fuzzy bilinear regression and fuzzy varying coefficient bilinear regression models, and also the forecasting of three models. Empirical analysis turns out that the proposed model has good fitting and forecasting accuracy with regard to other regression models for the capital market. 展开更多
关键词 FUZZY VARYING COEFFICIENT BILINEAR regression Model FUZZY Financial Assets YIELD least-squares Method Generalized Likelihood Ratio Test Forecast
下载PDF
Changes of coastline and tidal flat and its implication for ecological protection under human activities: Take China’s Bohai Bay as an example
9
作者 Yong Li Ming-zheng Wen +3 位作者 Heng Yu Peng Yang Fei-cui Wang Fu Wang 《China Geology》 CAS CSCD 2024年第1期26-35,共10页
The change processes and trends of shoreline and tidal flat forced by human activities are essential issues for the sustainability of coastal area,which is also of great significance for understanding coastal ecologic... The change processes and trends of shoreline and tidal flat forced by human activities are essential issues for the sustainability of coastal area,which is also of great significance for understanding coastal ecological environment changes and even global changes.Based on field measurements,combined with Linear Regression(LR)model and Inverse Distance Weighing(IDW)method,this paper presents detailed analysis on the change history and trend of the shoreline and tidal flat in Bohai Bay.The shoreline faces a high erosion chance under the action of natural factors,while the tidal flat faces a different erosion and deposition patterns in Bohai Bay due to the impact of human activities.The implication of change rule for ecological protection and recovery is also discussed.Measures should be taken to protect the coastal ecological environment.The models used in this paper show a high correlation coefficient between observed and modeling data,which means that this method can be used to predict the changing trend of shoreline and tidal flat.The research results of present study can provide scientific supports for future coastal protection and management. 展开更多
关键词 SHORELINE Tidal flat Erosion deposition patterns Changing trend Ecological protection Human activity Linear regression model Inverse distance weighing method Prediction Bohai Bay
下载PDF
湖羊体重与体尺性状的相关和回归分析 被引量:5
10
作者 毛明伟 贺小云 肖国亮 《中国草食动物科学》 CAS 2023年第4期68-70,74,共4页
为明确湖羊在新疆喀什地区的适应情况,探究体重、体尺的变化及相互关系,以某养殖企业1106只湖羊(其中公羊106只,母羊1000只)为研究对象,测定18月龄公母羊的体高(x_(1))、体长(x_(2))、胸宽(x_(3))和体重(y)等体尺指标,并对各指标间的相... 为明确湖羊在新疆喀什地区的适应情况,探究体重、体尺的变化及相互关系,以某养殖企业1106只湖羊(其中公羊106只,母羊1000只)为研究对象,测定18月龄公母羊的体高(x_(1))、体长(x_(2))、胸宽(x_(3))和体重(y)等体尺指标,并对各指标间的相关性进行分析。结果显示,1.5岁湖羊公羊的体重和体尺均极显著大于母羊(P<0.01)。公羊和母羊的体重与体高、体长和胸宽均呈极显著相关(P<0.01);公羊和母羊的各体尺指标之间均呈极显著正相关(P<0.01)。根据回归分析和模型参数估计,湖羊公羊体重估计的最优回归方程为y=0.59x_(1)+0.49x_(2)-2.84,母羊体重估计的最优回归方程为y=0.079x_(2)+0.196x_(3)+0.047x_(1)+46.09,表明对湖羊公、母羊的体重选育可重点针对体长、体高和胸宽等指标。 展开更多
关键词 湖羊 体重 体尺 相关 回归分析
下载PDF
Likelihood ratio-type tests in weighted composite quantile regression of DTARCH models 被引量:3
11
作者 Xiaoqian Liu Xinyuan Song Yong Zhou 《Science China Mathematics》 SCIE CSCD 2019年第12期2571-2590,共20页
The double-threshold autoregressive conditional heteroscedastic(DTARCH) model is a useful tool to measure and forecast the mean and volatility of an asset return in a financial time series. The DTARCH model can handle... The double-threshold autoregressive conditional heteroscedastic(DTARCH) model is a useful tool to measure and forecast the mean and volatility of an asset return in a financial time series. The DTARCH model can handle situations wherein the conditional mean and conditional variance specifications are piecewise linear based on previous information. In practical applications, it is important to check whether the model has a double threshold for the conditional mean and conditional heteroscedastic variance. In this study, we develop a likelihood ratio test based on the estimated residual error for the hypothesis testing of DTARCH models. We first investigate DTARCH models with restrictions on parameters and propose the unrestricted and restricted weighted composite quantile regression(WCQR) estimation for the model parameters. These estimators can be used to construct the likelihood ratio-type test statistic. We establish the asymptotic results of the WCQR estimators and asymptotic distribution of the proposed test statistics. The finite sample performance of the proposed WCQR estimation and the test statistic is shown to be acceptable and promising using simulation studies. We use two real datasets derived from the Shanghai and Shenzhen Composite Indexes to illustrate the methodology. 展开更多
关键词 DTARCH model QUANTILE weigh ted COMPOSITE QUANTILE regression modified LIKELIHOOD ratio test restricted WCQR ESTIMATORS unrestricted WCQR ESTIMATORS
原文传递
贵州省乡村贫困空间格局与形成机制分析 被引量:84
12
作者 王永明 王美霞 +2 位作者 吴殿廷 赵林 丁建军 《地理科学》 CSSCI CSCD 北大核心 2017年第2期217-227,共11页
以贫困态势严峻、区域内部贫困差异大的贵州省为研究区,分析了贵州省区县层面乡村贫困的空间异质性和空间依赖性格局,定量测度了乡村贫困空间差异的影响因素和因素效应的空间差异性,进而归纳了贵州省乡村贫困的形成机制。结果发现,贵州... 以贫困态势严峻、区域内部贫困差异大的贵州省为研究区,分析了贵州省区县层面乡村贫困的空间异质性和空间依赖性格局,定量测度了乡村贫困空间差异的影响因素和因素效应的空间差异性,进而归纳了贵州省乡村贫困的形成机制。结果发现,贵州省区县乡村贫困具有时空稳定性,呈现出东、南、西部高而中、北部低的"马蹄"形空间异质性格局。区县贫困存在较强的空间依赖性,"高-高"型贫困地域即空间贫困陷阱区域,集聚分布在贵州省的东南部、南部。定量模型发现,坡度、到所在市中心的距离、青少年人口占比、少数民族人口占比是导致贵州区县层面乡村贫困空间差异的显著因素,且这些因素的效应水平呈现出不同的空间模式。产业发展受限、劳动力流动性差、金融和人力资本积累不足是贵州贫困空间形成的主导机制。最后建议扶贫政策层面应将基于地方和基于人的政策相结合。 展开更多
关键词 乡村贫困 空间格局 空间自相关 地理加权回归 贵州
下载PDF
提高线阵CCD测量光束中心位置精密度的方法 被引量:6
13
作者 朱鹤年 张子良 +2 位作者 常缨 房元峰 王长江 《计量学报》 EI CSCD 北大核心 2006年第3期216-220,共5页
用线阵CCD测量类钟形分布的光束中心位置时,常用高斯分布模型和最小二乘(LSM)回归计算。提出一种用准高斯分布以提高测量灵敏度、用截取阈值较高的方式以减少噪声影响、用加权LSM回归以提高精密度的方法。由于高斯曲线拟合时的因变量不... 用线阵CCD测量类钟形分布的光束中心位置时,常用高斯分布模型和最小二乘(LSM)回归计算。提出一种用准高斯分布以提高测量灵敏度、用截取阈值较高的方式以减少噪声影响、用加权LSM回归以提高精密度的方法。由于高斯曲线拟合时的因变量不等权,选用加权回归和等权回归相比,ADC化整误差和光电测量误差的影响将减小一个数量级。根据CCD器件的参数,能够确定像元数据的误差限值。再用蒙特卡罗法模拟误差分布规律,通过截尾分布数值的加权回归,求出使测量精密度提高的合理光束宽度范围。已将此方法用于冲击电流计的改进设计和位移测量,使微电流测量的精密度提高达两个数量级,并使30 mm内的微位移测量的非线性标准差不大于0.0025%。 展开更多
关键词 计量学 光束宽度 高斯分布 截尾分布 加权回归
下载PDF
个性化服务中用户近期兴趣视图的生成 被引量:5
14
作者 朱征宇 裴仰军 +1 位作者 陈华月 付关友 《计算机工程与设计》 CSCD 北大核心 2005年第4期951-954,共4页
随着时间和环境的改变,Web用户的兴趣也会随之改变,在信息服务中应该能捕获到用户的这种近期兴趣变化以便能为用户提供更好的个性化服务。对现在描述网页的特征片技术中的关键词权重的计算做了改进以更加准确地描述网页,给出了利用行为... 随着时间和环境的改变,Web用户的兴趣也会随之改变,在信息服务中应该能捕获到用户的这种近期兴趣变化以便能为用户提供更好的个性化服务。对现在描述网页的特征片技术中的关键词权重的计算做了改进以更加准确地描述网页,给出了利用行为分析得到网页兴趣度的方法,进而给出了根据某领域的标准分类树形成网页分类树,并最终生成能准确表示用户近期兴趣的兴趣视图的新方法。以此进行个性化推荐也更加有效。 展开更多
关键词 个性化服务 词语权重 信息量 行为分析 回归分析 用户近期兴趣视图 网页
下载PDF
省域经济增长与电力消费的局域空间计量经济分析 被引量:44
15
作者 吴玉鸣 李建霞 《地理科学》 CSCD 北大核心 2009年第1期30-35,共6页
中国各个地区经济发展对电力消费需求量大且存在地域差异,不同区域间的电力需求与经济增长之间的关系十分复杂,并非能由常系数的普通最小二乘回归分析所解释。采用电力消费模型,利用局域空间计量经济学模型方法———空间变系数的地理... 中国各个地区经济发展对电力消费需求量大且存在地域差异,不同区域间的电力需求与经济增长之间的关系十分复杂,并非能由常系数的普通最小二乘回归分析所解释。采用电力消费模型,利用局域空间计量经济学模型方法———空间变系数的地理加权回归模型,对中国省域电力消费与经济增长之间的关系进行了局域空间计量经济分析。结果发现,中国大陆30个省域的电力消费和经济增长之间表现为一种非均衡的联动关系和局域性特征,制定差异化的区域电力消费调控政策是非常必要的。 展开更多
关键词 电力消费 经济增长 地理加权回归模型 局域空间计量经济分析
下载PDF
基于佣金定价决策的供应链金融平台利益权衡机制研究 被引量:7
16
作者 占永志 陈金龙 《工业技术经济》 CSSCI 北大核心 2017年第4期55-61,共7页
中介性质的供应链金融平台,创建与客户利益有效协调的佣金定价机制至关重要。本文运用鲁宾斯轮流讨价还价博弈思想,以债权融资业务为背景,构建了信息不对称情况下供应链金融中介平台与客户关于佣金决策的讨价还价博弈模型。通过博弈分... 中介性质的供应链金融平台,创建与客户利益有效协调的佣金定价机制至关重要。本文运用鲁宾斯轮流讨价还价博弈思想,以债权融资业务为背景,构建了信息不对称情况下供应链金融中介平台与客户关于佣金决策的讨价还价博弈模型。通过博弈分析得出了平台的最优佣金定价机制,按此佣金定价,可实现平台与客户利益的合理权衡。最后,对平台的定价机制进行了算例验证。 展开更多
关键词 供应链金融平台 中介 利益权衡 讨价还价博弈 逆向回归
下载PDF
基于温度效应的桥梁动态称重识别研究 被引量:6
17
作者 张豪 陈尚新 +1 位作者 余敏 龚豪 《浙江工业大学学报》 CAS 北大核心 2017年第6期682-687,693,共7页
以桥梁不同截面动应变响应为对象,分析识别不同截面的动应变数据,及荷载通过不同截面的时间差,进行车速识别.通过荷载在不同截面的应变影响线以及识别车速,获得动应变影响面积,利用影响面积与动荷载的相关关系,进行移动荷载识别研究,得... 以桥梁不同截面动应变响应为对象,分析识别不同截面的动应变数据,及荷载通过不同截面的时间差,进行车速识别.通过荷载在不同截面的应变影响线以及识别车速,获得动应变影响面积,利用影响面积与动荷载的相关关系,进行移动荷载识别研究,得到桥梁动态称重系数.据结构应变与温度的相关特性,通过对温度与应变的回归分析,确定其具体的经验回归方程,将温度所致的应变变化趋势从总的应变测量值中分离.对分离温度效应前后的称重系数进行对比,得到温度效应对桥梁动态称重的影响. 展开更多
关键词 动应变 桥梁动态称重系数 回归分析 温度效应
下载PDF
基于加权双高斯分布的广义自回归条件异方差边际电价预测模型 被引量:10
18
作者 刘西陲 沈炯 李益国 《电网技术》 EI CSCD 北大核心 2010年第1期139-144,共6页
研究电力市场系统边际电价(system marginal price,SMP)条件方差的变化规律及残差的统计分布特征,据此引入广义自回归条件异方差(generalized auto-regressive conditional heteroskedasticity,GARCH)模型,并建立了基于加权双高斯(weigh... 研究电力市场系统边际电价(system marginal price,SMP)条件方差的变化规律及残差的统计分布特征,据此引入广义自回归条件异方差(generalized auto-regressive conditional heteroskedasticity,GARCH)模型,并建立了基于加权双高斯(weighed double Gaussian,WDG)分布假设的GARCH模型(GARCH-WDG)对系统边际电价的变化规律进行研究。美国PJM市场和澳大利亚NSW市场的实际数据表明,GARCH模型对电价的估计和预测均有良好的效果,GARCH-WDG模型则进一步改善了GARCH模型的性能。 展开更多
关键词 系统边际电价 加权双高斯分布 广义自回归条件异方差 电价预测
下载PDF
利用后向轨迹模式研究上海市PM_(2.5)来源分布及传输特征 被引量:41
19
作者 赵倩彪 胡鸣 张懿华 《环境监测管理与技术》 2014年第4期22-26,共5页
利用后向轨迹模式,结合上海PM_(2.5)的浓度数据计算了2012年6月27日—2013年6月26日以上海为起始点的后向轨迹,并通过轨迹相关的分析方法,研究不同来源区域对上海PM_(2.5)浓度的贡献影响。结果表明:长三角地区的排放对上海的贡献最为显... 利用后向轨迹模式,结合上海PM_(2.5)的浓度数据计算了2012年6月27日—2013年6月26日以上海为起始点的后向轨迹,并通过轨迹相关的分析方法,研究不同来源区域对上海PM_(2.5)浓度的贡献影响。结果表明:长三角地区的排放对上海的贡献最为显著;苏北、山东等地区的排放对上海也有较明显的贡献;来自海面的贡献总体低于大陆。所采用的轨迹多元回归分析法为PM_(2.5)的来源分布及传输特征研究提供了新思路。 展开更多
关键词 后向轨迹 轨迹多元回归 聚类分析 潜在源贡献因子 浓度权重轨迹 PM2.5 上海
下载PDF
基于聚类学习与导控核回归的文本超分辨率 被引量:1
20
作者 郝宁波 杨杰 廖海斌 《计算机工程与设计》 北大核心 2018年第5期1399-1404,共6页
针对文本图像中分布着大量空白区域和存在大量相似和冗余字符的特性,将导控核回归方法与聚类学习方法相结合,提出一种基于聚类学习的加权核回归超分辨重建模型。基于该模型可对字符图像的局部结构进行学习,实现文本字符的超分辨率重建,... 针对文本图像中分布着大量空白区域和存在大量相似和冗余字符的特性,将导控核回归方法与聚类学习方法相结合,提出一种基于聚类学习的加权核回归超分辨重建模型。基于该模型可对字符图像的局部结构进行学习,实现文本字符的超分辨率重建,超分辨率重建方法通过对大量无关样本进行局部结构聚类,使重建过程可以利用局部邻域的结构信息,并学习大量聚类子样本集里包含的非局部邻域结构信息,保障重建的鲁棒性。超分辨率重建实验从主观评价和客观指标上验证了提出方法的有效性。 展开更多
关键词 文本图像处理 超分辨重建 聚类学习 导控核回归 加权核回归
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部