In this paper, using the kernel weight function, we obtain the parameter estimation of p-norm distribution in semi-parametric regression model, which is effective to decide the distribution of random errors. Under the...In this paper, using the kernel weight function, we obtain the parameter estimation of p-norm distribution in semi-parametric regression model, which is effective to decide the distribution of random errors. Under the assumption that the distribution of observations is unimodal and symmetry, this method can give the estimates of the parametric. Finally, two simulated adjustment problem are constructed to explain this method. The new method presented in this paper shows an effective way of solving the problem; the estimated values are nearer to their theoretical ones than those by least squares adjustment approach.展开更多
文摘In this paper, using the kernel weight function, we obtain the parameter estimation of p-norm distribution in semi-parametric regression model, which is effective to decide the distribution of random errors. Under the assumption that the distribution of observations is unimodal and symmetry, this method can give the estimates of the parametric. Finally, two simulated adjustment problem are constructed to explain this method. The new method presented in this paper shows an effective way of solving the problem; the estimated values are nearer to their theoretical ones than those by least squares adjustment approach.