期刊文献+
共找到60篇文章
< 1 2 3 >
每页显示 20 50 100
Boundedness of Marcinkiewicz Integrals in Weighted Variable Exponent Herz-Morrey Spaces 被引量:2
1
作者 XIAO DAN SHU LI-SHENG Ji You-qing 《Communications in Mathematical Research》 CSCD 2018年第4期371-382,共12页
In this paper, under natural regularity assumptions on the exponent function, we prove some boundedness results for the functions of Littlewood-Paley, Lusin and Marcinkiewicz on a new class of generalized Herz-Morrey ... In this paper, under natural regularity assumptions on the exponent function, we prove some boundedness results for the functions of Littlewood-Paley, Lusin and Marcinkiewicz on a new class of generalized Herz-Morrey spaces with weight and variable exponent, which essentially extend some known results. 展开更多
关键词 Marcinkiewicz integral variable exponent Muckenhoupt weight Herz-Morrey space
下载PDF
Boundedness for the Singular Integral with Variable Kernel and Fractional Differentiation on Weighted Morrey Spaces 被引量:1
2
作者 Chao Xue Kai Zhu Yanping Chen 《Analysis in Theory and Applications》 CSCD 2016年第3期205-214,共10页
Let T be the singular integral operator with variable kernel, T* be the adjoint of T and T# be the pseudo-adjoint of T. Let TIT2 be the product of T1 and T2, T1 o T2 be the pseudo product of T1 and T2. In this paper,... Let T be the singular integral operator with variable kernel, T* be the adjoint of T and T# be the pseudo-adjoint of T. Let TIT2 be the product of T1 and T2, T1 o T2 be the pseudo product of T1 and T2. In this paper, we establish the boundedness for commutators of these operators and the fractional differentiation operator D^γ on the weighted Morrey spaces. 展开更多
关键词 Singular integral variable kernel fractional differentiation BMO sobolev space weighted Morrey spaces
下载PDF
ON THE WEIGHTED VARIABLE EXPONENT AMALGAM SPACE W(L^(p(x)), L_m^q)
3
作者 A. Turan GRKANLI Ismail AYDIN 《Acta Mathematica Scientia》 SCIE CSCD 2014年第4期1098-1110,共13页
In [4], a new family W(L^p(x), Lm^q) of Wiener amalgam spaces was defined and investigated some properties of these spaces, where local component is a variable exponent Lebesgue space L^p(x) (R) and the global... In [4], a new family W(L^p(x), Lm^q) of Wiener amalgam spaces was defined and investigated some properties of these spaces, where local component is a variable exponent Lebesgue space L^p(x) (R) and the global component is a weighted Lebesgue space Lm^q (R). This present paper is a sequel to our work [4]. In Section 2, we discuss necessary and sufficient conditions for the equality W (L^p(x), Lm^q) = L^q (R). Later we give some characterization of Wiener amalgam space W (L^p(x), Lm^q).In Section 3 we define the Wiener amalgam space W (FL^p(x), Lm^q) and investigate some properties of this space, where FL^p(x) is the image of L^p(x) under the Fourier transform. In Section 4, we discuss boundedness of the Hardy- Littlewood maximal operator between some Wiener amalgam spaces. 展开更多
关键词 weighted Lebesgne space variable exponent Lebesgue
下载PDF
一类具Hardy-Sobolev临界增长拟线性椭圆方程的径向解
4
作者 占兰兰 陈南博 刘期怀 《桂林电子科技大学学报》 2024年第1期93-97,共5页
考虑一类具有临界Hardy-Sobolev指数的p-Laplace拟线性椭圆方程及其扰动问题的径向解的存在性,通过Lions引理和非线性泛函理论知识建立Sobolev空间到加权Lebesgue空间的紧嵌入定理,并利用极小化方法,得到了上述问题在全空间和有界区域... 考虑一类具有临界Hardy-Sobolev指数的p-Laplace拟线性椭圆方程及其扰动问题的径向解的存在性,通过Lions引理和非线性泛函理论知识建立Sobolev空间到加权Lebesgue空间的紧嵌入定理,并利用极小化方法,得到了上述问题在全空间和有界区域上的径向解的存在性。 展开更多
关键词 临界Hardy-sobolev指数 加权Lebesgue空间 紧嵌入 极小化方法
下载PDF
Existence of Entropy Solution for Degenerate Parabolic-Hyperbolic Problem Involving p(x)-Laplacian with Neumann Boundary Condition
5
作者 Mohamed Karimou Gazibo Duni Yegbonoma Frédéric Zongo 《Applied Mathematics》 2024年第7期455-463,共9页
We consider a strongly non-linear degenerate parabolic-hyperbolic problem with p(x)-Laplacian diffusion flux function. We propose an entropy formulation and prove the existence of an entropy solution.
关键词 Lebesgue and sobolev spaces with variable exponent Weak Solution Entropy Solution Degenerate Parabolic-Hyperbolic Equation Conservation Law Leray Lions Type Operator Neumann Boundary Condition Existence Result
下载PDF
Weighted Estimates of Variable Kernel Fractional Integral and Its Commutators on Vanishing Generalized Morrey Spaces with Variable Exponent 被引量:6
6
作者 Xukui SHAO Shuangping TAO 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2021年第3期451-470,共20页
In this paper,the authors obtain the boundedness of the fractional integral operators with variable kernels on the variable exponent generalized weighted Morrey spaces and the variable exponent vanishing generalized w... In this paper,the authors obtain the boundedness of the fractional integral operators with variable kernels on the variable exponent generalized weighted Morrey spaces and the variable exponent vanishing generalized weighted Morrey spaces.And the corresponding commutators generated by BMO function are also considered. 展开更多
关键词 Fractional integral COMMUTATOR variable kernel Vanishing generalized weighted Morrey space with variable exponent BMO space
原文传递
Boundedness of Vector Valued Bilinear Calderón-Zygmund Operators on Products of Weighted Herz-Morrey Spaces with Variable Exponents 被引量:3
7
作者 Shengrong WANG Jingshi XU 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2021年第5期693-720,共28页
In this paper,the authors obtain the boundedness of vector valued bilinear Calderón-Zygmund operators on products of weighted Herz-Morrey spaces with variable exponents.
关键词 Bilinear Calderón-Zygmund operator Vector valued inequality Muckenhoupt weight variable exponent Herz-Morrey space
原文传递
Operator Equations and Duality Mappings in Sobolev Spaces with Variable Exponents
8
作者 Philippe G.CIARLET George DINCA Pavel MATEI 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2013年第5期639-666,共28页
After studying in a previous work the smoothness of the space where dr- measF0 〉 O, with p(.) E C(~) and p(x) 〉 1 for all x E , the authors study in this paper the strict and uniform convexity as well as some ... After studying in a previous work the smoothness of the space where dr- measF0 〉 O, with p(.) E C(~) and p(x) 〉 1 for all x E , the authors study in this paper the strict and uniform convexity as well as some special properties of duality mappings defined on the same space. The results obtained in this direction are used for proving existence results for operator equations having the form Ju = Niu, where J is a duality mapping on Uro corresponding to the gauge function ~, and Nf is the Nemytskij operator generated by a Caratheodory function f satisfying an appropriate growth condition ensuring that Nf may be viewed as acting from Ur0 into its dual. 展开更多
关键词 Monotone operators SMOOTHNESS Strict convexity Uniform convexity Duality mappings sobolev spaces with a variable exponent Nemytskijoperators
原文传递
Existence of <i>T</i>-<i>ν</i>-<i>p</i>(<i>x</i>)-Solution of a Nonhomogeneous Elliptic Problem with Right Hand Side Measure
9
作者 El Houcine Rami Abdelkrim Barbara El Houssine Azroul 《Journal of Applied Mathematics and Physics》 2021年第11期2717-2732,共16页
Using the theory of weighted Sobolev spaces with variable exponent and the <em>L</em><sup>1</sup>-version on Minty’s lemma, we investigate the existence of solutions for some nonhomogeneous Di... Using the theory of weighted Sobolev spaces with variable exponent and the <em>L</em><sup>1</sup>-version on Minty’s lemma, we investigate the existence of solutions for some nonhomogeneous Dirichlet problems generated by the Leray-Lions operator of divergence form, with right-hand side measure. Among the interest of this article is the given of a very important approach to ensure the existence of a weak solution of this type of problem and of generalization to a system with the minimum of conditions. 展开更多
关键词 Nonhomogeneous Elliptic Equations Dirichlet Problems weighted sobolev spaces with variable exponent Minty’s Lemma T-ν-p(x)-Solutions
下载PDF
Boundedness of Maximal Operators and Potential Operators on Carleson Curves in Lebesgue Spaces with Variable Exponent 被引量:5
10
作者 V.KOKILASHVILI S.SAMKO 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2008年第11期1775-1800,共26页
We prove the boundedness of the maximal operator Mr in the spaces L^p(·)(Г,p) with variable exponent p(t) and power weight p on an arbitrary Carleson curve under the assumption that p(t) satisfies the lo... We prove the boundedness of the maximal operator Mr in the spaces L^p(·)(Г,p) with variable exponent p(t) and power weight p on an arbitrary Carleson curve under the assumption that p(t) satisfies the log-condition on Г. We prove also weighted Sobolev type L^p(·)(Г, p) → L^q(·)(Г, p)-theorem for potential operators on Carleson curves. 展开更多
关键词 weighted generalized Lebesgue spaces variable exponent singular operator fractional integrals sobolev theorem
原文传递
Poincaré and Sobolev Inequalities for Vector Fields Satisfying Hrmander's Condition in Variable Exponent Sobolev Spaces 被引量:2
11
作者 Xia LI Guo Zhen LU Han Li TANG 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2015年第7期1067-1085,共19页
In this paper, we will establish Poincare inequalities in variable exponent non-isotropic Sobolev spaces. The crucial part is that we prove the boundedness of the fractional integral operator on variable exponent Lebe... In this paper, we will establish Poincare inequalities in variable exponent non-isotropic Sobolev spaces. The crucial part is that we prove the boundedness of the fractional integral operator on variable exponent Lebesgue spaces on spaces of homogeneous type. We obtain the first order Poincare inequalities for vector fields satisfying Hormander's condition in variable non-isotropic Sobolev spaces. We also set up the higher order Poincare inequalities with variable exponents on stratified Lie groups. Moreover, we get the Sobolev inequalities in variable exponent Sobolev spaces on whole stratified Lie groups. These inequalities are important and basic tools in studying nonlinear subelliptic PDEs with variable exponents such as the p(x)-subLaplacian. Our results are only stated and proved for vector fields satisfying Hormander's condition, but they also hold for Grushin vector fields as well with obvious modifications. 展开更多
关键词 Poincare inequalities the representation formula fractional integrals on homogeneousspaces vector fields satisfying Hormander's condition stratified groups high order non-isotropic sobolev spaces with variable exponents sobolev inequalities with variable exponents
原文传递
THE EXISTENCE OF A NONTRIVIAL WEAK SOLUTION TO A DOUBLE CRITICAL PROBLEM INVOLVING A FRACTIONAL LAPLACIAN IN R^N WITH A HARDY TERM 被引量:3
12
作者 Gongbao LI Tao YANG 《Acta Mathematica Scientia》 SCIE CSCD 2020年第6期1808-1830,共23页
In this paper,we consider the existence of nontrivial weak solutions to a double critical problem involving a fractional Laplacian with a Hardy term:(−Δ)s u−γu|x|2s=|u|2∗s(β)−2 u|x|β+[Iμ∗Fα(⋅,u)](x)fα(x,u),u∈H... In this paper,we consider the existence of nontrivial weak solutions to a double critical problem involving a fractional Laplacian with a Hardy term:(−Δ)s u−γu|x|2s=|u|2∗s(β)−2 u|x|β+[Iμ∗Fα(⋅,u)](x)fα(x,u),u∈H˙s(R n),(0.1)(1)where s∈(0,1),0≤α,β<2s<n,μ∈(0,n),γ<γH,Iμ(x)=|x|−μ,Fα(x,u)=|u(x)|2#μ(α)|x|δμ(α),fα(x,u)=|u(x)|2#μ(α)−2 u(x)|x|δμ(α),2#μ(α)=(1−μ2n)⋅2∗s(α),δμ(α)=(1−μ2n)α,2∗s(α)=2(n−α)n−2s andγH=4 sΓ2(n+2s4)Γ2(n−2s4).We show that problem(0.1)admits at least a weak solution under some conditions.To prove the main result,we develop some useful tools based on a weighted Morrey space.To be precise,we discover the embeddings H˙s(R n)↪L 2∗s(α)(R n,|y|−α)↪L p,n−2s2 p+pr(R n,|y|−pr),(0.2)(2)where s∈(0,1),0<α<2s<n,p∈[1,2∗s(α))and r=α2∗s(α).We also establish an improved Sobolev inequality,(∫R n|u(y)|2∗s(α)|y|αdy)12∗s(α)≤C||u||θH˙s(R n)||u||1−θL p,n−2s2 p+pr(R n,|y|−pr),∀u∈H˙s(R n),(0.3)(3)where s∈(0,1),0<α<2s<n,p∈[1,2∗s(α)),r=α2∗s(α),0<max{22∗s(α),2∗s−12∗s(α)}<θ<1,2∗s=2nn−2s and C=C(n,s,α)>0 is a constant.Inequality(0.3)is a more general form of Theorem 1 in Palatucci,Pisante[1].By using the mountain pass lemma along with(0.2)and(0.3),we obtain a nontrivial weak solution to problem(0.1)in a direct way.It is worth pointing out that(0.2)and 0.3)could be applied to simplify the proof of the existence results in[2]and[3]. 展开更多
关键词 existence of a weak solution fractional Laplacian double critical exponents Hardy term weighted Morrey space improved sobolev inequality
下载PDF
对称性与Sobolev嵌入
13
作者 康晓红 王建升 赵洪雅 《太原理工大学学报》 CAS 北大核心 2012年第5期627-629,共3页
建立了一个Sobolev空间上部分对称函数到加权Lp空间的嵌入定理,并给出这一定理对具临界增长非线性椭圆边值问题的应用。过去这类结论主要是关于Holder函数的,笔者将这一结论推广到连续函数。
关键词 部分对称 加权函数空间 嵌入 临界sobolev指标
下载PDF
A Poincaré Inequality in a Sobolev Space with a Variable Exponent 被引量:1
14
作者 Philippe G.CIARLET George DINCA 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2011年第3期333-342,共10页
Let Ω be a domain in RN. It is shown that a generalized Poincaré inequality holds in cones contained in the Sobolev space Wl,P( )(Ω), where p(.) : Ω → [1, ∞[ is a variable exponent. This inequality is... Let Ω be a domain in RN. It is shown that a generalized Poincaré inequality holds in cones contained in the Sobolev space Wl,P( )(Ω), where p(.) : Ω → [1, ∞[ is a variable exponent. This inequality is itself a corollary to a more general result about equivalent norms over such cones. The approach in this paper avoids the difficulty arising from the possible lack of density of the space ;D(Ω) in the space {v ∈ Wl,P( )(Ω); tr v = 0 on δΩ}. Two applications are also discussed. 展开更多
关键词 Poincaré inequality sobolev spaces with variable exponent
原文传递
对称Sobolev空间到加权L^(2^*)空间的紧嵌入
15
作者 康晓红 《太原理工大学学报》 CAS 北大核心 2006年第5期597-599,共3页
根据LIons引理,建立了Sobolev空间H1(Rn)到一类加权L2*空间紧嵌入定理。将这一理论应用到Rn上的标量场方程,得到具有限能量的正解,推广了文献[2]的部分结果。
关键词 sobolev嵌入 临界指标 加权L^p空间 椭圆方程
下载PDF
Characterizations of Weighted Besov Spaces with Variable Exponents
16
作者 Sheng Rong WANG Peng Fei GUO Jing Shi XU 《Acta Mathematica Sinica,English Series》 SCIE 2024年第11期2855-2878,共24页
In this paper,we first give characterizations of weighted Besov spaces with variable exponents via Peetre’s maximal functions.Then we obtain decomposition characterizations of these spaces by atom,molecule and wavele... In this paper,we first give characterizations of weighted Besov spaces with variable exponents via Peetre’s maximal functions.Then we obtain decomposition characterizations of these spaces by atom,molecule and wavelet.As an application,we obtain the boundedness of the pseudo-differential operators on these spaces. 展开更多
关键词 Besov space Muckenhoupt weight variable exponent Peetre’s maximal function atom molecule wavelet pseudo-differential operator
原文传递
双权变指标Herz-Morrey空间上的双线性Calderón-Zygmund算子的交换子
17
作者 王盛荣 郭鹏飞 徐景实 《应用数学》 北大核心 2024年第2期337-358,共22页
利用Muckenhoupt权的性质、有界平均振荡函数的性质和Hardy-Littlewood极大算子在变指标Lebesgue空间上的有界性,本文得到了双线性Calderón-Zygmund算子和BMO函数生成的交换子在双权变指标Herz-Morrey空间乘积上的有界性.
关键词 CALDERÓN-ZYGMUND算子 Muckenhoupt权 变指标 HERZ-MORREY空间
下载PDF
向量值次线性算子的交换子在变指数Herz-Morrey空间上的加权估计
18
作者 刘可欣 王立伟 《应用数学》 北大核心 2024年第2期496-508,共13页
利用变指数A(p(·))权理论及广义BMO范数性质,我们证明了一类向量值次线性算子的交换子在加权变指数Herz-Morrey空间MK^(α)(·)λ_(q)(·)ω上的有界性,其中α(·),p(·)和q(·)均为变指数.
关键词 向量值次线性算子 交换子 变指数Herz-Morrey空间 Muckenhoupt权
下载PDF
加权极大变指数Herz型空间上的次线性算子
19
作者 王英杰 周梦 汤灿琴 《东北师大学报(自然科学版)》 CAS 北大核心 2024年第1期40-45,共6页
定义了与变积分指数极大空间相结合的变光滑指标下的加权极大变指数Herz空间,并利用加权齐次变指数Herz空间范数的等价定义及权函数相关特征,获得了次线性算子在此类加权极大变指数Herz空间上的有界性.
关键词 次线性算子 加权极大Herz空间 变指数函数空间
下载PDF
带有非强制性低阶项的变指标抛物问题
20
作者 李春锦 许少鹏 《海南大学学报(自然科学版)》 CAS 2024年第2期111-120,共10页
研究了在穿孔域上带有变指数和带有低阶项的非线性抛物方程的重整化解的存在性结果.通过使用截断法,单调算子理论和正则化方法在变指数Sobolev空间的框架下解决了带有一个不具有强制性的低阶项的非线性抛物方程的重整化解的存在性问题.
关键词 重整化解 存在性 低阶项 变指数sobolev空间
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部