In Non-Orthogonal Multiple Access(NOMA),the best way to fully exploit the benefits of the system is the efficient resource allocation.For the NOMA power domain,the allocation of power and spectrum require solving the ...In Non-Orthogonal Multiple Access(NOMA),the best way to fully exploit the benefits of the system is the efficient resource allocation.For the NOMA power domain,the allocation of power and spectrum require solving the mixed-integer nonlinear programming NP-hard problem.In this paper,we investigate user scheduling and power allocation in Multi-Cell Multi-Carrier NOMA(MCMC-NOMA)networks.To achieve that,we consider Weighted Sum Rate Maximization(WSRM)and Weighted Sum Energy Efficiency Maximization(WSEEM)problems.First,we tackle the problem of user scheduling for fixed power using Fractional Programming(FP),the Lagrange dual method,and the decomposition method.Then,we consider Successive Pseudo-Convex Approximation(SPCA)to deal with the WSRM problem.Finally,for the WSEEM problem,SPCA is utilized to convert the problem into separable scalar problems,which can be parallelly solved.Thus,the Dinkelbach algorithm and constraints relaxation are used to characterize the closed-form solution for power allocation.Extensive simulations have been implemented to show the efficiency of the proposed framework and its superiority over other existing schemes.展开更多
This paper presents a novel spec- trum sharing design aiming at optimising the performance of a Multiuser Orthogonal Freq- uency-Division Multiplexing (MU-OFDM) Co- gnitive Radio Network (CRN) that consists of mul...This paper presents a novel spec- trum sharing design aiming at optimising the performance of a Multiuser Orthogonal Freq- uency-Division Multiplexing (MU-OFDM) Co- gnitive Radio Network (CRN) that consists of multiple secondary Transmitter-Receiver (Tx-Rx) pairs. For most MU-OFDM systems, the Exc- lusive Subchannel Assignment (ESA) is an efficient resource allocation method. Noneth- eless, it is inappropriate for the network consi- dered in this paper, because subchannels shar- ing among secondary Tx-Rx pairs can further improve the system performance. We investi- gate the Weighted Sum Rate (WSR) maximi- zation problem under the Shared Subchannel Assignment (SSA), where each subchannel is shared by multiple secondary Tx-Rx pairs. With Lagrangian duality technique, we decompose the original resource allocation problem into sev- eral sub-problems on each subchannel and pro- pose a duality-based suhchannel sharing ap- proach. For practical realisation in the cogni- tive systems without central control entity, a distributed duality-based WSR maximization scheme is presented. Simulation results mani- fest that the proposed scheme achieves sig- nificantly better performance than ESA duality scheme.展开更多
基金supported by the National Science Foundation of P.R.China (No.61701064)the Chongqing Natural Science Foundation (cstc2019jcyj-msxmX0264).
文摘In Non-Orthogonal Multiple Access(NOMA),the best way to fully exploit the benefits of the system is the efficient resource allocation.For the NOMA power domain,the allocation of power and spectrum require solving the mixed-integer nonlinear programming NP-hard problem.In this paper,we investigate user scheduling and power allocation in Multi-Cell Multi-Carrier NOMA(MCMC-NOMA)networks.To achieve that,we consider Weighted Sum Rate Maximization(WSRM)and Weighted Sum Energy Efficiency Maximization(WSEEM)problems.First,we tackle the problem of user scheduling for fixed power using Fractional Programming(FP),the Lagrange dual method,and the decomposition method.Then,we consider Successive Pseudo-Convex Approximation(SPCA)to deal with the WSRM problem.Finally,for the WSEEM problem,SPCA is utilized to convert the problem into separable scalar problems,which can be parallelly solved.Thus,the Dinkelbach algorithm and constraints relaxation are used to characterize the closed-form solution for power allocation.Extensive simulations have been implemented to show the efficiency of the proposed framework and its superiority over other existing schemes.
基金ACKNOWLEDGEMENT This work was supported in part by the Na- tional Natural Science Foundation of China un- der Grants No. 60972072, No. 61340033 and the 111 Project of China under Grant No. B08038.
文摘This paper presents a novel spec- trum sharing design aiming at optimising the performance of a Multiuser Orthogonal Freq- uency-Division Multiplexing (MU-OFDM) Co- gnitive Radio Network (CRN) that consists of multiple secondary Transmitter-Receiver (Tx-Rx) pairs. For most MU-OFDM systems, the Exc- lusive Subchannel Assignment (ESA) is an efficient resource allocation method. Noneth- eless, it is inappropriate for the network consi- dered in this paper, because subchannels shar- ing among secondary Tx-Rx pairs can further improve the system performance. We investi- gate the Weighted Sum Rate (WSR) maximi- zation problem under the Shared Subchannel Assignment (SSA), where each subchannel is shared by multiple secondary Tx-Rx pairs. With Lagrangian duality technique, we decompose the original resource allocation problem into sev- eral sub-problems on each subchannel and pro- pose a duality-based suhchannel sharing ap- proach. For practical realisation in the cogni- tive systems without central control entity, a distributed duality-based WSR maximization scheme is presented. Simulation results mani- fest that the proposed scheme achieves sig- nificantly better performance than ESA duality scheme.