An improved parallel weighted bit-flipping(PWBF) algorithm is presented. To accelerate the information exchanges between check nodes and variable nodes, the bit-flipping step and the check node updating step of the ...An improved parallel weighted bit-flipping(PWBF) algorithm is presented. To accelerate the information exchanges between check nodes and variable nodes, the bit-flipping step and the check node updating step of the original algorithm are parallelized. The simulation experiments demonstrate that the improved PWBF algorithm provides about 0. 1 to 0. 3 dB coding gain over the original PWBF algorithm. And the improved algorithm achieves a higher convergence rate. The choice of the threshold is also discussed, which is used to determine whether a bit should be flipped during each iteration. The appropriate threshold can ensure that most error bits be flipped, and keep the right ones untouched at the same time. The improvement is particularly effective for decoding quasi-cyclic low-density paritycheck(QC-LDPC) codes.展开更多
In case of mathematical programming problems with conflicting criteria, the Pareto set is a useful tool for a decision maker. Based on the geometric properties of the Pareto set for a bicriteria linear programming pro...In case of mathematical programming problems with conflicting criteria, the Pareto set is a useful tool for a decision maker. Based on the geometric properties of the Pareto set for a bicriteria linear programming problem, we present a simple and fast method to compute this set in the criterion space using only an elementary linear program solver. We illustrate the method by solving the pig diet formulation problem which takes into account not only the cost of the diet but also nitrogen or phosphorus excretions.展开更多
基金The National High Technology Research and Development Program of China (863Program) ( No2009AA01Z235,2006AA01Z263)the Research Fund of the National Mobile Communications Research Laboratory of Southeast University(No2008A10)
文摘An improved parallel weighted bit-flipping(PWBF) algorithm is presented. To accelerate the information exchanges between check nodes and variable nodes, the bit-flipping step and the check node updating step of the original algorithm are parallelized. The simulation experiments demonstrate that the improved PWBF algorithm provides about 0. 1 to 0. 3 dB coding gain over the original PWBF algorithm. And the improved algorithm achieves a higher convergence rate. The choice of the threshold is also discussed, which is used to determine whether a bit should be flipped during each iteration. The appropriate threshold can ensure that most error bits be flipped, and keep the right ones untouched at the same time. The improvement is particularly effective for decoding quasi-cyclic low-density paritycheck(QC-LDPC) codes.
文摘In case of mathematical programming problems with conflicting criteria, the Pareto set is a useful tool for a decision maker. Based on the geometric properties of the Pareto set for a bicriteria linear programming problem, we present a simple and fast method to compute this set in the criterion space using only an elementary linear program solver. We illustrate the method by solving the pig diet formulation problem which takes into account not only the cost of the diet but also nitrogen or phosphorus excretions.