It is indicated by historical records and the exploratory trench on the Weihe fault that the Yaodian-Zhangjiawan segment of the Weihe fault zone has experienced a historical earthquake and 3 paleoearthquake events in ...It is indicated by historical records and the exploratory trench on the Weihe fault that the Yaodian-Zhangjiawan segment of the Weihe fault zone has experienced a historical earthquake and 3 paleoearthquake events in the past 9110a. The historical earthquake, namely, event Ⅳ, occurred between 1487 and 1568 AD. The date of paleoseismic event Ⅰ is (9110 + 90) a, and the ages of events Ⅱ and Ⅲ are unknown. The coseismic vertical displacement of events Ⅰ, Ⅱ and Ⅲ is 0.5m, 0.5m and 0.2m, respectively. The exploratory trench also indicates that the Yaodian-Zhangjiawan segment of the Weihe fault was active in the Holocene.展开更多
This paper gives a study of 3 D crustal seismic velocity changes in the Weihe fault depression basin, in which the overlapping sphere iterative reconstruction method of tomographic image was used in connection with ...This paper gives a study of 3 D crustal seismic velocity changes in the Weihe fault depression basin, in which the overlapping sphere iterative reconstruction method of tomographic image was used in connection with the two point fast ray tracing technique. By means of theoretical modeling, the monitoring function of the observatory network system of Shaanxi Province was tested. Using the seismic data of the network, seismic tomographic inversion imaging of the crustal seismic velocity in the Weihe fault basin was studied. The results are as follows: In the Tongchuan Yaoxian area to the north of Jingyang, there is a high velocity region extending nearly in NS direction, the highest velocity value is around Tongchuan. To the southwest of Shangxian and Lantian, there is a low velocity zone about 100 km long and about 50 km wide, inside which there are two regions of the lowest velocity 50 km apart. The epicenters of historical strong earthquakes are mainly on the boundary of high velocity regions or in regions of fairly high velocity. In the eastern and western parts of the south margin of the Qinling Mountains, there is an obvious lateral nonhomogeneity of seismic velocity.展开更多
In this paper, we focus on the characteristics of the landslides developed in the epicentral area of AD 1556 M^8.5 Huaxian Earthquake, and discuss their relations to the active normal faults in the SE Weihe Graben, Ce...In this paper, we focus on the characteristics of the landslides developed in the epicentral area of AD 1556 M^8.5 Huaxian Earthquake, and discuss their relations to the active normal faults in the SE Weihe Graben, Central China. The results from analyzing high-resolution remote-sensing imagery and digital elevation models(DEMs), in combination with field survey, demonstrate that:(i) the landslides observed in the study area range from small-scale debris/rock falls to large-scale rock avalanches;(ii) the landslides are mostly developed upon steep slopes of ≥30°; and(iii) the step-like normal-fault scarps along the range-fronts of the Huashan Mountains as well as the thick loess sediments in the Weinan area may facilitate the occurrence of large landslides. The results presented in this study would be helpful to assess the potential landslide hazards in densely-populated areas affected by active normal faulting.展开更多
基金supported under the project of "Experimental Prospecting of Active Fault in Urban Area" of National Development and Reform Commission of China , Grant No.20041138
文摘It is indicated by historical records and the exploratory trench on the Weihe fault that the Yaodian-Zhangjiawan segment of the Weihe fault zone has experienced a historical earthquake and 3 paleoearthquake events in the past 9110a. The historical earthquake, namely, event Ⅳ, occurred between 1487 and 1568 AD. The date of paleoseismic event Ⅰ is (9110 + 90) a, and the ages of events Ⅱ and Ⅲ are unknown. The coseismic vertical displacement of events Ⅰ, Ⅱ and Ⅲ is 0.5m, 0.5m and 0.2m, respectively. The exploratory trench also indicates that the Yaodian-Zhangjiawan segment of the Weihe fault was active in the Holocene.
文摘This paper gives a study of 3 D crustal seismic velocity changes in the Weihe fault depression basin, in which the overlapping sphere iterative reconstruction method of tomographic image was used in connection with the two point fast ray tracing technique. By means of theoretical modeling, the monitoring function of the observatory network system of Shaanxi Province was tested. Using the seismic data of the network, seismic tomographic inversion imaging of the crustal seismic velocity in the Weihe fault basin was studied. The results are as follows: In the Tongchuan Yaoxian area to the north of Jingyang, there is a high velocity region extending nearly in NS direction, the highest velocity value is around Tongchuan. To the southwest of Shangxian and Lantian, there is a low velocity zone about 100 km long and about 50 km wide, inside which there are two regions of the lowest velocity 50 km apart. The epicenters of historical strong earthquakes are mainly on the boundary of high velocity regions or in regions of fairly high velocity. In the eastern and western parts of the south margin of the Qinling Mountains, there is an obvious lateral nonhomogeneity of seismic velocity.
基金supported by the National Natural Science Foundation of China (No. 41502203)the Scientific Research Foundation for Returned Overseas Scholars of China (awarded to G. Rao)+1 种基金the Natural Science Foundation of Zhejiang Province (No. LY15D02001)a Science Project (No. 23253002)from the Ministry of Education, Culture, Sports, Science and Technology of Japan
文摘In this paper, we focus on the characteristics of the landslides developed in the epicentral area of AD 1556 M^8.5 Huaxian Earthquake, and discuss their relations to the active normal faults in the SE Weihe Graben, Central China. The results from analyzing high-resolution remote-sensing imagery and digital elevation models(DEMs), in combination with field survey, demonstrate that:(i) the landslides observed in the study area range from small-scale debris/rock falls to large-scale rock avalanches;(ii) the landslides are mostly developed upon steep slopes of ≥30°; and(iii) the step-like normal-fault scarps along the range-fronts of the Huashan Mountains as well as the thick loess sediments in the Weinan area may facilitate the occurrence of large landslides. The results presented in this study would be helpful to assess the potential landslide hazards in densely-populated areas affected by active normal faulting.