In this paper we classify Kantowski-Sachs and Bianchi type Ⅲ space-times according to their teleparallel Killing vector fields using direct integration technique. It turns out that the dimension of the telepaxallel K...In this paper we classify Kantowski-Sachs and Bianchi type Ⅲ space-times according to their teleparallel Killing vector fields using direct integration technique. It turns out that the dimension of the telepaxallel Killing vector fields are 4 or 6, which are the same in numbers as in general relativity. In case of 4 the teleparallel Killing vector fields are multiple of the corresponding Killing vector fields in general relativity by some function of t. In the case of 6 Killing vector fields the metric functions become constants and the Killing vector fields in this case are exactly the same as in general relativity. Here we also discuss the Lie algebra in each case.展开更多
For a harmonic map between two hyperkäher manifolds,we prove a Weitzenböck type formula for the defining quantity of quaternionic maps,and apply it to harmonic morphisms.We also provide a sufficient and nece...For a harmonic map between two hyperkäher manifolds,we prove a Weitzenböck type formula for the defining quantity of quaternionic maps,and apply it to harmonic morphisms.We also provide a sufficient and necessary condition for a smooth map being quaternionic.展开更多
文摘In this paper we classify Kantowski-Sachs and Bianchi type Ⅲ space-times according to their teleparallel Killing vector fields using direct integration technique. It turns out that the dimension of the telepaxallel Killing vector fields are 4 or 6, which are the same in numbers as in general relativity. In case of 4 the teleparallel Killing vector fields are multiple of the corresponding Killing vector fields in general relativity by some function of t. In the case of 6 Killing vector fields the metric functions become constants and the Killing vector fields in this case are exactly the same as in general relativity. Here we also discuss the Lie algebra in each case.
文摘For a harmonic map between two hyperkäher manifolds,we prove a Weitzenböck type formula for the defining quantity of quaternionic maps,and apply it to harmonic morphisms.We also provide a sufficient and necessary condition for a smooth map being quaternionic.