It is proved that the action of the higher-dimensional gravity in Weitzenb(?)ck space reduces to the sum of the action of gravity in four-dimensional space-time and that of gauge fields. In this sense we conclude that...It is proved that the action of the higher-dimensional gravity in Weitzenb(?)ck space reduces to the sum of the action of gravity in four-dimensional space-time and that of gauge fields. In this sense we conclude that in Weitzenb(?)ck space the higher-dimensional Kaluza-Klein theory holds.展开更多
We compute the total energy and the spatial momentum of four charged rotating (Kerr-Newman) frames by using the gravitational energy-momentum 3-form within the framework of the tetrad formulation of the general rela...We compute the total energy and the spatial momentum of four charged rotating (Kerr-Newman) frames by using the gravitational energy-momentum 3-form within the framework of the tetrad formulation of the general relativity theory. We show how the effect of the inertial always makes the total energy divergent. We use a natural regularization method, which yields the physical value for the total energy of the system. We show how the regularization method works on a number of different rotating frames that are related to each other by the local Lorentz transformation. We also show that the inertial has no effect on the spatial momentum components.展开更多
In this paper we classify spatially homogeneous rotating space-times according to their teleparallel Killing vector fields using direct integration technique.It turns out that the dimension of the teleparallel Killing...In this paper we classify spatially homogeneous rotating space-times according to their teleparallel Killing vector fields using direct integration technique.It turns out that the dimension of the teleparallel Killing vector fields is 5 or 10.In the case of 10 teleparallel Killing vector fields the space-time becomes Minkowski and all the torsion components are zero.Teleparallel Killing vector fields in this case are exactly the same as in general relativity.In the cases of 5 teleparallel Killing vector fields we get two more conservation laws in the teleparallel theory of gravitation.Here we also discuss some well-known examples of spatially homogeneous rotating space-times according to their teleparallel Killing vector fields.展开更多
文摘It is proved that the action of the higher-dimensional gravity in Weitzenb(?)ck space reduces to the sum of the action of gravity in four-dimensional space-time and that of gauge fields. In this sense we conclude that in Weitzenb(?)ck space the higher-dimensional Kaluza-Klein theory holds.
文摘We compute the total energy and the spatial momentum of four charged rotating (Kerr-Newman) frames by using the gravitational energy-momentum 3-form within the framework of the tetrad formulation of the general relativity theory. We show how the effect of the inertial always makes the total energy divergent. We use a natural regularization method, which yields the physical value for the total energy of the system. We show how the regularization method works on a number of different rotating frames that are related to each other by the local Lorentz transformation. We also show that the inertial has no effect on the spatial momentum components.
文摘In this paper we classify spatially homogeneous rotating space-times according to their teleparallel Killing vector fields using direct integration technique.It turns out that the dimension of the teleparallel Killing vector fields is 5 or 10.In the case of 10 teleparallel Killing vector fields the space-time becomes Minkowski and all the torsion components are zero.Teleparallel Killing vector fields in this case are exactly the same as in general relativity.In the cases of 5 teleparallel Killing vector fields we get two more conservation laws in the teleparallel theory of gravitation.Here we also discuss some well-known examples of spatially homogeneous rotating space-times according to their teleparallel Killing vector fields.