The maximum flyer impact velocity based on a dynamic solidification cracking mechanism is proposed to describe the upper limit of collision welding process windows.Thus,the upper limit of the weld window is governed b...The maximum flyer impact velocity based on a dynamic solidification cracking mechanism is proposed to describe the upper limit of collision welding process windows.Thus,the upper limit of the weld window is governed by the evolution of dynamic stresses and temperatures at the weld interface.Current formulations for the upper limit of the collision weld window assume that both the flyer and target are made of the same material and approximate stress propagation velocities using the acoustic velocity or the shear wave velocity of the weld material.However,collision welding fundamentally depends on the impacts that generate shockwaves in weld members,which can dominate the stress propagation velocities in thin weld sections.Therefore,this study proposes an alternative weld window upper limit that approximates stress propagation using shock velocities calculated from modified 1-D Rankine-Hugoniot relations.The shock upper limit is validated against the experimental and simulation data in the collision welding literature,and offers a design tool to rapidly predict more accurate optimal collision weld process limits for similar and dissimilar weld couples compared to existing models without the cost or complexity of high-fidelity simulations.展开更多
Striving for cleaner production is a sought-after manufacturing philosophy.Friction stir welding(FSW)is a joiningtechnique with par excellence and far less invasive to the environment than even best conventional weldi...Striving for cleaner production is a sought-after manufacturing philosophy.Friction stir welding(FSW)is a joiningtechnique with par excellence and far less invasive to the environment than even best conventional welding processes.It is energyefficient and free from consumables,affluent and radiations.It is,thus,accepted as a clean welding process that can produceacceptable quality joints.It suffers from some major challenges of defects of its own kind that subject the process open toimprovements so as to prove itself a reliable production process.This study presents a holistic characterization of defects commonlyfound in FSW joints.The finding of the present study reveals that most defects are caused by inadequate heat generation,impropermaterial movement around the pin and inadequate material consolidation behind the pin.The amount of heat generation andmaterial stirring depends on several FSW parameters which may lead to the defect formation,if not selected properly.The resultsreported in this work are derived from sound literature support and experimentation.Prescriptions are made in the form ofcharacteristics of defects such as likelihood of their location,main responsible parameters along with the recommendations forminimizing them.展开更多
The statistical probability and their variation regularity of the measurable characteristic parameters in the CO 2 arc welding droplet short circuiting transfer process have been studied. The statistical analysis sh...The statistical probability and their variation regularity of the measurable characteristic parameters in the CO 2 arc welding droplet short circuiting transfer process have been studied. The statistical analysis shows that the sensitivity of each characteristic parameter with regard to the variation of the short circuiting transfer process is different. The sensitivity of 4 kinds among these characteristic parameters is more intense than that of the short circuiting transfer frequency. In order to take account of the synthetic influence of these characteristic parameters, by means of the characteristic parameters synthetic value, a quantitative evaluation function is built up to describe and evaluate the short circuiting transfer process of CO 2 arc welding in real time. The testing shows that the evaluation function can give a suitable synthetic valuation for the short circuiting transfer process with a variety of welding variables.展开更多
The groove defect formed in the friction stir welding dramatically deteriorates weld appearances and mechanical properties of the joints owing to its larger size and penetration. Therefore, the friction stir repair we...The groove defect formed in the friction stir welding dramatically deteriorates weld appearances and mechanical properties of the joints owing to its larger size and penetration. Therefore, the friction stir repair welding was utilized to remove such a groove defect, and the focus was placed on the mechanical properties and microstructural characteristics of the repair joints so as to obtain an optimum repair welding process. The experimental results indicate that the groove defect can be removed by friction stir repair welding, and the offset repair welding process is superior to the symmetrical repair welding process. In the symmetrical repair welding process, a large number of fine cavity defects and an obvious aggregation of hard-brittle phase Al2Cu occur, accordingly the mechanical properties of the repair joint are weakened, and the fracture feature of repair joint is partially brittle and partially plastic. A good-quality repair joint can be obtained by the offset repair welding process, and the repair joint is fractured near the interface between the weld nugget zone and thermal-mechanically affected zone.展开更多
Based on the phase state reconstruction of welding current in short-circuiting gas metal arc welding using carbon dioxide as shielding gas, the approximate entropy of welding current as well as its standard deviation ...Based on the phase state reconstruction of welding current in short-circuiting gas metal arc welding using carbon dioxide as shielding gas, the approximate entropy of welding current as well as its standard deviation has been calculated and analysed to investigate their relation with the stability of electric arc and welding process. The extensive experimental and calculated results show that the approximate entropy of welding current is significantly and positively correlated with arc and welding process stability, whereas its standard deviation is correlated with them negatively. A larger approximate entropy and a smaller standard deviation imply a more stable arc and welding process, and vice versa. As a result, the approximate entropy of welding current promises well in assessing and quantifying the stability of electric arc and welding process in short-circuiting gas metal arc welding.展开更多
In the proposed method, the current/arc is guided through the keyhole so that the energy of the plasma jet is compensated while it is consumed in heating the workpiece along the keyhole. As a result, deep narrow penet...In the proposed method, the current/arc is guided through the keyhole so that the energy of the plasma jet is compensated while it is consumed in heating the workpiece along the keyhole. As a result, deep narrow penetration has been achieved on 12.7 mm (1/2') thick stainless steel plates using 70 A welding current.展开更多
The rules such as process parameters affecting joint properties and theevolution principle of weld's microstructure have been researched by adopting diffusion weldingprocess to connect SiC_w/6061Al composite. Expe...The rules such as process parameters affecting joint properties and theevolution principle of weld's microstructure have been researched by adopting diffusion weldingprocess to connect SiC_w/6061Al composite. Experimental results show that there exists a criticaltemperature region between solid and liquid phase line of SiC_w/6061Al composite, and the regionwill shrink with the increasing of welding pressure. When diffusion welding occurred under thecritical temperature region, welding joint exhibits bad property of bonding, and the matrix and thereinforcement can't bond effectively. When diffusion welding occurred in the critical temperatureregion, the strength of welding joint changes widely with the variation of welding temperature. Whenwelding temperature varies in 10 deg C, the strength of welding joint will change obviously. Onlywhen welding temperature is higher than the critical temperature region, stable joint properties canbe obtained. Simultaneously the matrix and the reinforcement has better interfacial bonded indiffusion welding interface, and no obvious interface reaction occurred, and thus diffusion weldingof SiC_w/6061 Al composite can be successfully realized.展开更多
Quenched and Tempered(Q&T) steels are widely used in the construction of military vehicles due to its high strength to weight ratio and high hardness. These steels are prone to hydrogen induced cracking(HIC) in th...Quenched and Tempered(Q&T) steels are widely used in the construction of military vehicles due to its high strength to weight ratio and high hardness. These steels are prone to hydrogen induced cracking(HIC) in the heat affected zone(HAZ) after welding. The use of austenitic stainless steel(ASS) consumables to weld the above steel was the only available remedy because of higher solubility for hydrogen in austenitic phase. The use of stainless steel consumables for a non-stainless steel base metal is not economical. Hence, alternate consumables for welding Q&T steels and their vulnerability to HIC need to be explored. Recent studies proved that low hydrogen ferritic steel(LHF) consumables can be used to weld Q&T steels, which can give very low hydrogen levels in the weld deposits. The use of ASS and LHF consumables will lead to distinct microstructures in their respective welds. This microstructural heterogeneity will have a drastic influence in the fatigue crack growth resistance of armour grade Q&T steel welds. Hence, in this investigation an attempt has been made to study the influence of welding consumables and welding processes on fatigue crack growth behaviour of armour grade Q&T Steel joints. Shielded metal arc welding(SMAW) and Flux cored arc welding(FCAW) were used for fabrication of joints using ASS and LHF consumables. The joints fabricated by SMAW process using LHF consumable exhibited superior fatigue crack growth resistance than all other joints.展开更多
Computer vision has come into used in the fields of welding process control and automation. In order to improve precision and rapidity of welding image processing, a novel method based on fractal theory has been put f...Computer vision has come into used in the fields of welding process control and automation. In order to improve precision and rapidity of welding image processing, a novel method based on fractal theory has been put forward in this paper. Compared with traditional methods, the image is preliminarily processed in the macroscopic regions then thoroughly analyzed in the microscopic regions in the new method. With which, an image is divided up to some regions according to the different fractal characters of image edge, and the fuzzy regions including image edges are detected out, then image edges are identified with Sobel operator and curved by LSM (Lease Square Method). Since the data to be processed have been decreased and the noise of image has been reduced, it has been testified through experiments that edges of weld seam or weld pool could be recognized correctly and quickly.展开更多
Sealing quality strongly affects heat pipe performance, but few studies focus on the process of heat pipe sealing. Cold welding sealing technology based on a stamping process is applied for heat pipe sealing. The bond...Sealing quality strongly affects heat pipe performance, but few studies focus on the process of heat pipe sealing. Cold welding sealing technology based on a stamping process is applied for heat pipe sealing. The bonding mechanism of the cold welding sealing process (CWSP) is investigated and compared with the experimental results obtained from the bonding interface analysis. An orthogonal experiment is conducted to observe the effects of various parameters, including the sealing gap, sealing length, sealing diameter, and sealing velocity on bonding strength. A method with the utilization of saturated vapor pressure inside a copper tube is proposed to evaluate bonding strength. A corresponding finite element model is developed to investigate the effects of sealing gap and sealing velocity on plastic deformation during the cold welding process. Effects of various parameters on the bonding strength are determined and it is found that the sealing gap is the most critical factor and that the sealing velocity contributes the least effect. The best parameter combination (AIB3CID3, with a 0.5 mm sealing gap, 6 mm sealing length, 3.8 mm sealing diameter, and 50 mm/s sealing velocity) is derived within the experimental parameters. Plastic deformation results derived from the finite element model are consistent with those from the experiment. The instruction for the CWSP of heat pipes and the design of sealing dies of heat pipes are provided.展开更多
In this research, pulverization plate and base of a fuel injector in an automobile electronic-controlled engine was joined by pulsed laser welding. The different welding parameters were evaluated and effect of process...In this research, pulverization plate and base of a fuel injector in an automobile electronic-controlled engine was joined by pulsed laser welding. The different welding parameters were evaluated and effect of process parameters on joint characteristics was analyzed. The optimal process parameters were obtained as follows: welding current 120 A, welding speed 600 ram/rain, pulse duration 1.80 ms and pulse frequency 60 Hz. The microstructure of weld metal was investigated. Results show that the fusion zone is austenitic dendrite, the weld center is equiaxed grain, while the transition zone between fusion zone and weld center is mixed crystal with austenitic dendrite and equiaxed grain. The weld layered phenomenon was observed, and eddy caused by keyhole effect is the main reason for the formation of layered structure in molten pool.展开更多
Welding technology is very vital for the industrial development and technological advancement of any country. In this regard achieving good quality machine manufactured products cannot be over emphasized. Since weldin...Welding technology is very vital for the industrial development and technological advancement of any country. In this regard achieving good quality machine manufactured products cannot be over emphasized. Since welding is a very reliable method of joining metals together permanently, several methodologies have been adopted to improve the quality of weldments, such as the neural network, fuzzy logic, surface response methodology, full factorial method, and so on. In this case, the multi-objective optimization on the basis of ratio analysis (MOORA) is applied. MOORA is used to solve multi-criteria (objective) optimization problem in welding. MOORA in combination with standard deviation (SDV) was used for the optimization process. SDV was used to determine the weights that were used for normalizing the responses obtained from the mechanical test results. From applying the SDV-MOORA method, it was found that welding current of 350 A, welding voltage of 22 V, an electrode diameter of 3.2 mm and welding speed of 100 mm/s produced the weldment with the best mechanical properties. The mechanical properties compare very well with those obtained from other literature. It is, therefore, concluded that the SDV-MOORA method has successfully optimized the welding process parameters used in this study.展开更多
Single-stripe laser was applied to acquire V-shape groove contour information. Most of arc light and splash noise was removed and stripe laser image was kept by wavelet transform. Half-threshold algorithm was used for...Single-stripe laser was applied to acquire V-shape groove contour information. Most of arc light and splash noise was removed and stripe laser image was kept by wavelet transform. Half-threshold algorithm was used for image segmentation and stripe laser image was gotten after refining. Weld seam center position was identified and extracted by extreme curvature corner detection method. The location of torch was detected to accord the frequency of computer program with robot program and serial communication program. The tracking experiments of sidelong, reflex and curve weld line show that the system can meet the demand of the tracking precision under normal welding conditions.展开更多
The dynamic thermal process during double-sided asymmetrical TIG backing welding of large thick plates ( 1 000 mm×700 mm×50 mm) is numerically simulated using MSC. MARC. The effect of arc distance on the t...The dynamic thermal process during double-sided asymmetrical TIG backing welding of large thick plates ( 1 000 mm×700 mm×50 mm) is numerically simulated using MSC. MARC. The effect of arc distance on the thermal cycle in weld zone during double-sided asymmetrical T1G backing welding is investigated. The results show that the workpiece experiences double-peak thermal cycle in double-sided asymmetrical TIG backing welding. On the one hand, the fore arc has the pre- heating effect on the rear pass, and the pre-heating temperature depends on the distance between the double arcs, the heat input of fore arc, and the initial temperature of workpiece. On the other hand, the rear arc has the post-heating effect on the fore pass. The mutual effects of two heat sources decrease with the increase of arc distance.展开更多
The existing research of welding arc mainly focuses on the stable combustion state and the research on the mechanism of welding arc ignition process is quite lack.The tungsten inert gas(TIG) touch arc ignition proce...The existing research of welding arc mainly focuses on the stable combustion state and the research on the mechanism of welding arc ignition process is quite lack.The tungsten inert gas(TIG) touch arc ignition process is observed via a high speed camera and the high time resolution spectral diagnosis system.The changing phenomenon of main ionized element provided the electrons in the arc ignition is found.The metallic element is the main contributor to provide the electrons at the beginning of the discharging,and then the excitated shielding gas element replaces the function of the metallic element.The electron density during the period of the arc ignition is calculated by the Stark-broadened lines of Hα.Through the discussion with the repeatability in relaxation phenomenon,the statistical regularity in the arc ignition process is analyzed.The similar rules as above are observed through the comparison with the laser-assisted arc ignition experiments and the metal inert gas(MIG) arc ignition experiments.This research is helpful to further understanding on the generation mechanism of welding arc ignition and also has a certain academic and practical significance on enriching the welding physical theoretical foundation and improving the precise monitoring on automatic arc welding process.展开更多
This review article aims to analyze and evaluate the advantages, shortcomings, technological advancements and hereafter prospects in welding and processing of magnesium and its alloys. Studies have accounted that repl...This review article aims to analyze and evaluate the advantages, shortcomings, technological advancements and hereafter prospects in welding and processing of magnesium and its alloys. Studies have accounted that replacing other metals with Mg alloys will bring about in monumental weight reduction with significant addition in strength that could lead to dramatic transformation of metallic era of 21st century and onwards. However,wide application of Mg and its alloys depends on the development of advanced welding &joining technologies. The current paradigm and progress in welding,joining and processing of magnesium and its alloys are reviewed,and research trend in this field is briefly discussed.展开更多
A controller based on a PID neural network (PIDNN) is proposed for an arc welding power source whose output characteristic in responding to a given value is quickly and intelligently controlled in the welding proces...A controller based on a PID neural network (PIDNN) is proposed for an arc welding power source whose output characteristic in responding to a given value is quickly and intelligently controlled in the welding process. The new method syncretizes the PID control strategy and neural network to control the welding process intelligently, so it has the merit of PID control rules and the trait of better information disposal ability of the neural network. The results of simulation show that the controller has the properties of quick response, low overshoot, quick convergence and good stable accuracy, which meet the requirements for control of the welding process.展开更多
Modeling is essential, significant and difficult for the quality and shaping control of arc welding process. A generalized rough set based modeling method was brought forward and a dynamic predictive model for pulsed ...Modeling is essential, significant and difficult for the quality and shaping control of arc welding process. A generalized rough set based modeling method was brought forward and a dynamic predictive model for pulsed gas tungsten arc welding (GTAW) was obtained by this modeling method. The results show that this modeling method can well acquire knowledge in welding and satisfy the real life application. In addition, the results of comparison between classic rough set model and back-propagation neural network model respectively are also satisfying.展开更多
A visual sensing system was developed. The system is suitable for titanium-alloy electron-beam welding, and senses and detects molten-pool dynamic processes. A suite of processing programs for colored molten-pool imag...A visual sensing system was developed. The system is suitable for titanium-alloy electron-beam welding, and senses and detects molten-pool dynamic processes. A suite of processing programs for colored molten-pool images in titanium-alloy electron-beam welding was developed using Matlab software; molten-pool edge images are completely obtained using the program. The Matlab software was used to write a program which could extract the molten-pool width. The functional relationship between the molten-pool width and penetration under the experimental conditions was obtained by a curve-fitting method, and provided the theoretical basis for further penetration control.展开更多
基金support of the DEVCOM Army Research Laboratory and the Department of Defense SMART scholarship-for-service program.
文摘The maximum flyer impact velocity based on a dynamic solidification cracking mechanism is proposed to describe the upper limit of collision welding process windows.Thus,the upper limit of the weld window is governed by the evolution of dynamic stresses and temperatures at the weld interface.Current formulations for the upper limit of the collision weld window assume that both the flyer and target are made of the same material and approximate stress propagation velocities using the acoustic velocity or the shear wave velocity of the weld material.However,collision welding fundamentally depends on the impacts that generate shockwaves in weld members,which can dominate the stress propagation velocities in thin weld sections.Therefore,this study proposes an alternative weld window upper limit that approximates stress propagation using shock velocities calculated from modified 1-D Rankine-Hugoniot relations.The shock upper limit is validated against the experimental and simulation data in the collision welding literature,and offers a design tool to rapidly predict more accurate optimal collision weld process limits for similar and dissimilar weld couples compared to existing models without the cost or complexity of high-fidelity simulations.
基金the University Grants Commission (UGC) for its financial assistance (vide sanction order No. F.3-40/2012(SAP-Ⅱ)) under its SAP (DRS-Ⅰ) sanctioned to the Department of Mechanical Engineering for the project entitled Friction Stir Welding and Ultrasonic Machiningfinancially supported by the King Saud University, Vice Deanship of Research Chairs
文摘Striving for cleaner production is a sought-after manufacturing philosophy.Friction stir welding(FSW)is a joiningtechnique with par excellence and far less invasive to the environment than even best conventional welding processes.It is energyefficient and free from consumables,affluent and radiations.It is,thus,accepted as a clean welding process that can produceacceptable quality joints.It suffers from some major challenges of defects of its own kind that subject the process open toimprovements so as to prove itself a reliable production process.This study presents a holistic characterization of defects commonlyfound in FSW joints.The finding of the present study reveals that most defects are caused by inadequate heat generation,impropermaterial movement around the pin and inadequate material consolidation behind the pin.The amount of heat generation andmaterial stirring depends on several FSW parameters which may lead to the defect formation,if not selected properly.The resultsreported in this work are derived from sound literature support and experimentation.Prescriptions are made in the form ofcharacteristics of defects such as likelihood of their location,main responsible parameters along with the recommendations forminimizing them.
文摘The statistical probability and their variation regularity of the measurable characteristic parameters in the CO 2 arc welding droplet short circuiting transfer process have been studied. The statistical analysis shows that the sensitivity of each characteristic parameter with regard to the variation of the short circuiting transfer process is different. The sensitivity of 4 kinds among these characteristic parameters is more intense than that of the short circuiting transfer frequency. In order to take account of the synthetic influence of these characteristic parameters, by means of the characteristic parameters synthetic value, a quantitative evaluation function is built up to describe and evaluate the short circuiting transfer process of CO 2 arc welding in real time. The testing shows that the evaluation function can give a suitable synthetic valuation for the short circuiting transfer process with a variety of welding variables.
基金Project supported by the Program of Excellent Team in Harbin Institute of Technology, ChinaProject(2006BAF04B09) supported by the National Key Technology Research and Development Program of China
文摘The groove defect formed in the friction stir welding dramatically deteriorates weld appearances and mechanical properties of the joints owing to its larger size and penetration. Therefore, the friction stir repair welding was utilized to remove such a groove defect, and the focus was placed on the mechanical properties and microstructural characteristics of the repair joints so as to obtain an optimum repair welding process. The experimental results indicate that the groove defect can be removed by friction stir repair welding, and the offset repair welding process is superior to the symmetrical repair welding process. In the symmetrical repair welding process, a large number of fine cavity defects and an obvious aggregation of hard-brittle phase Al2Cu occur, accordingly the mechanical properties of the repair joint are weakened, and the fracture feature of repair joint is partially brittle and partially plastic. A good-quality repair joint can be obtained by the offset repair welding process, and the repair joint is fractured near the interface between the weld nugget zone and thermal-mechanically affected zone.
基金Project supported by the National Natural Science Foundation of China(Grant Nos50375053 and 50575077)
文摘Based on the phase state reconstruction of welding current in short-circuiting gas metal arc welding using carbon dioxide as shielding gas, the approximate entropy of welding current as well as its standard deviation has been calculated and analysed to investigate their relation with the stability of electric arc and welding process. The extensive experimental and calculated results show that the approximate entropy of welding current is significantly and positively correlated with arc and welding process stability, whereas its standard deviation is correlated with them negatively. A larger approximate entropy and a smaller standard deviation imply a more stable arc and welding process, and vice versa. As a result, the approximate entropy of welding current promises well in assessing and quantifying the stability of electric arc and welding process in short-circuiting gas metal arc welding.
基金This work is supported by the National Natural Science Foundation under Grant DMI-9812981
文摘In the proposed method, the current/arc is guided through the keyhole so that the energy of the plasma jet is compensated while it is consumed in heating the workpiece along the keyhole. As a result, deep narrow penetration has been achieved on 12.7 mm (1/2') thick stainless steel plates using 70 A welding current.
文摘The rules such as process parameters affecting joint properties and theevolution principle of weld's microstructure have been researched by adopting diffusion weldingprocess to connect SiC_w/6061Al composite. Experimental results show that there exists a criticaltemperature region between solid and liquid phase line of SiC_w/6061Al composite, and the regionwill shrink with the increasing of welding pressure. When diffusion welding occurred under thecritical temperature region, welding joint exhibits bad property of bonding, and the matrix and thereinforcement can't bond effectively. When diffusion welding occurred in the critical temperatureregion, the strength of welding joint changes widely with the variation of welding temperature. Whenwelding temperature varies in 10 deg C, the strength of welding joint will change obviously. Onlywhen welding temperature is higher than the critical temperature region, stable joint properties canbe obtained. Simultaneously the matrix and the reinforcement has better interfacial bonded indiffusion welding interface, and no obvious interface reaction occurred, and thus diffusion weldingof SiC_w/6061 Al composite can be successfully realized.
基金New Delhi for funding this project work(Project No MAA/03/41)
文摘Quenched and Tempered(Q&T) steels are widely used in the construction of military vehicles due to its high strength to weight ratio and high hardness. These steels are prone to hydrogen induced cracking(HIC) in the heat affected zone(HAZ) after welding. The use of austenitic stainless steel(ASS) consumables to weld the above steel was the only available remedy because of higher solubility for hydrogen in austenitic phase. The use of stainless steel consumables for a non-stainless steel base metal is not economical. Hence, alternate consumables for welding Q&T steels and their vulnerability to HIC need to be explored. Recent studies proved that low hydrogen ferritic steel(LHF) consumables can be used to weld Q&T steels, which can give very low hydrogen levels in the weld deposits. The use of ASS and LHF consumables will lead to distinct microstructures in their respective welds. This microstructural heterogeneity will have a drastic influence in the fatigue crack growth resistance of armour grade Q&T steel welds. Hence, in this investigation an attempt has been made to study the influence of welding consumables and welding processes on fatigue crack growth behaviour of armour grade Q&T Steel joints. Shielded metal arc welding(SMAW) and Flux cored arc welding(FCAW) were used for fabrication of joints using ASS and LHF consumables. The joints fabricated by SMAW process using LHF consumable exhibited superior fatigue crack growth resistance than all other joints.
文摘Computer vision has come into used in the fields of welding process control and automation. In order to improve precision and rapidity of welding image processing, a novel method based on fractal theory has been put forward in this paper. Compared with traditional methods, the image is preliminarily processed in the macroscopic regions then thoroughly analyzed in the microscopic regions in the new method. With which, an image is divided up to some regions according to the different fractal characters of image edge, and the fuzzy regions including image edges are detected out, then image edges are identified with Sobel operator and curved by LSM (Lease Square Method). Since the data to be processed have been decreased and the noise of image has been reduced, it has been testified through experiments that edges of weld seam or weld pool could be recognized correctly and quickly.
基金Supported by National Natural Science Foundation of China(Grant Nos.51175186,51675185)Guangdong Provincial Natural Science Foundation of China(Grant No.S2013020012757)EU project PIIF-GA-2012-332304(Grant No.ESR332304)
文摘Sealing quality strongly affects heat pipe performance, but few studies focus on the process of heat pipe sealing. Cold welding sealing technology based on a stamping process is applied for heat pipe sealing. The bonding mechanism of the cold welding sealing process (CWSP) is investigated and compared with the experimental results obtained from the bonding interface analysis. An orthogonal experiment is conducted to observe the effects of various parameters, including the sealing gap, sealing length, sealing diameter, and sealing velocity on bonding strength. A method with the utilization of saturated vapor pressure inside a copper tube is proposed to evaluate bonding strength. A corresponding finite element model is developed to investigate the effects of sealing gap and sealing velocity on plastic deformation during the cold welding process. Effects of various parameters on the bonding strength are determined and it is found that the sealing gap is the most critical factor and that the sealing velocity contributes the least effect. The best parameter combination (AIB3CID3, with a 0.5 mm sealing gap, 6 mm sealing length, 3.8 mm sealing diameter, and 50 mm/s sealing velocity) is derived within the experimental parameters. Plastic deformation results derived from the finite element model are consistent with those from the experiment. The instruction for the CWSP of heat pipes and the design of sealing dies of heat pipes are provided.
文摘In this research, pulverization plate and base of a fuel injector in an automobile electronic-controlled engine was joined by pulsed laser welding. The different welding parameters were evaluated and effect of process parameters on joint characteristics was analyzed. The optimal process parameters were obtained as follows: welding current 120 A, welding speed 600 ram/rain, pulse duration 1.80 ms and pulse frequency 60 Hz. The microstructure of weld metal was investigated. Results show that the fusion zone is austenitic dendrite, the weld center is equiaxed grain, while the transition zone between fusion zone and weld center is mixed crystal with austenitic dendrite and equiaxed grain. The weld layered phenomenon was observed, and eddy caused by keyhole effect is the main reason for the formation of layered structure in molten pool.
文摘Welding technology is very vital for the industrial development and technological advancement of any country. In this regard achieving good quality machine manufactured products cannot be over emphasized. Since welding is a very reliable method of joining metals together permanently, several methodologies have been adopted to improve the quality of weldments, such as the neural network, fuzzy logic, surface response methodology, full factorial method, and so on. In this case, the multi-objective optimization on the basis of ratio analysis (MOORA) is applied. MOORA is used to solve multi-criteria (objective) optimization problem in welding. MOORA in combination with standard deviation (SDV) was used for the optimization process. SDV was used to determine the weights that were used for normalizing the responses obtained from the mechanical test results. From applying the SDV-MOORA method, it was found that welding current of 350 A, welding voltage of 22 V, an electrode diameter of 3.2 mm and welding speed of 100 mm/s produced the weldment with the best mechanical properties. The mechanical properties compare very well with those obtained from other literature. It is, therefore, concluded that the SDV-MOORA method has successfully optimized the welding process parameters used in this study.
基金supported by National Natural Science Foundation of China No. 50705030Guangdong Province Foundation of No.0133002
文摘Single-stripe laser was applied to acquire V-shape groove contour information. Most of arc light and splash noise was removed and stripe laser image was kept by wavelet transform. Half-threshold algorithm was used for image segmentation and stripe laser image was gotten after refining. Weld seam center position was identified and extracted by extreme curvature corner detection method. The location of torch was detected to accord the frequency of computer program with robot program and serial communication program. The tracking experiments of sidelong, reflex and curve weld line show that the system can meet the demand of the tracking precision under normal welding conditions.
文摘The dynamic thermal process during double-sided asymmetrical TIG backing welding of large thick plates ( 1 000 mm×700 mm×50 mm) is numerically simulated using MSC. MARC. The effect of arc distance on the thermal cycle in weld zone during double-sided asymmetrical T1G backing welding is investigated. The results show that the workpiece experiences double-peak thermal cycle in double-sided asymmetrical TIG backing welding. On the one hand, the fore arc has the pre- heating effect on the rear pass, and the pre-heating temperature depends on the distance between the double arcs, the heat input of fore arc, and the initial temperature of workpiece. On the other hand, the rear arc has the post-heating effect on the fore pass. The mutual effects of two heat sources decrease with the increase of arc distance.
基金supported by National Natural Science Foundation of China(Grant No. 50375005)
文摘The existing research of welding arc mainly focuses on the stable combustion state and the research on the mechanism of welding arc ignition process is quite lack.The tungsten inert gas(TIG) touch arc ignition process is observed via a high speed camera and the high time resolution spectral diagnosis system.The changing phenomenon of main ionized element provided the electrons in the arc ignition is found.The metallic element is the main contributor to provide the electrons at the beginning of the discharging,and then the excitated shielding gas element replaces the function of the metallic element.The electron density during the period of the arc ignition is calculated by the Stark-broadened lines of Hα.Through the discussion with the repeatability in relaxation phenomenon,the statistical regularity in the arc ignition process is analyzed.The similar rules as above are observed through the comparison with the laser-assisted arc ignition experiments and the metal inert gas(MIG) arc ignition experiments.This research is helpful to further understanding on the generation mechanism of welding arc ignition and also has a certain academic and practical significance on enriching the welding physical theoretical foundation and improving the precise monitoring on automatic arc welding process.
基金Sponsored by the State Key Laboratory of Advanced Welding and Joining,Harbin Institute of Technology(Grant No.AWJ-Z16-05)
文摘This review article aims to analyze and evaluate the advantages, shortcomings, technological advancements and hereafter prospects in welding and processing of magnesium and its alloys. Studies have accounted that replacing other metals with Mg alloys will bring about in monumental weight reduction with significant addition in strength that could lead to dramatic transformation of metallic era of 21st century and onwards. However,wide application of Mg and its alloys depends on the development of advanced welding &joining technologies. The current paradigm and progress in welding,joining and processing of magnesium and its alloys are reviewed,and research trend in this field is briefly discussed.
基金National Nature Science Foundation of China (No.50575074)
文摘A controller based on a PID neural network (PIDNN) is proposed for an arc welding power source whose output characteristic in responding to a given value is quickly and intelligently controlled in the welding process. The new method syncretizes the PID control strategy and neural network to control the welding process intelligently, so it has the merit of PID control rules and the trait of better information disposal ability of the neural network. The results of simulation show that the controller has the properties of quick response, low overshoot, quick convergence and good stable accuracy, which meet the requirements for control of the welding process.
基金The National Natural Science Foundation of China(No 60474036)
文摘Modeling is essential, significant and difficult for the quality and shaping control of arc welding process. A generalized rough set based modeling method was brought forward and a dynamic predictive model for pulsed gas tungsten arc welding (GTAW) was obtained by this modeling method. The results show that this modeling method can well acquire knowledge in welding and satisfy the real life application. In addition, the results of comparison between classic rough set model and back-propagation neural network model respectively are also satisfying.
文摘A visual sensing system was developed. The system is suitable for titanium-alloy electron-beam welding, and senses and detects molten-pool dynamic processes. A suite of processing programs for colored molten-pool images in titanium-alloy electron-beam welding was developed using Matlab software; molten-pool edge images are completely obtained using the program. The Matlab software was used to write a program which could extract the molten-pool width. The functional relationship between the molten-pool width and penetration under the experimental conditions was obtained by a curve-fitting method, and provided the theoretical basis for further penetration control.