For dissimilar metal welds(DMWs)involving nickel-based weld metal(WM)and ferritic heat resistant steel base metal(BM)in power plants,there must be an interface between WM and BM,and this interface suffers mechanical a...For dissimilar metal welds(DMWs)involving nickel-based weld metal(WM)and ferritic heat resistant steel base metal(BM)in power plants,there must be an interface between WM and BM,and this interface suffers mechanical and microstructure mismatches and is often the rupture location of premature failure.In this study,a new form of WM/BM interface form,namely double Y-type interface was designed for the DMWs.Creep behaviors and life of DMWs containing double Y-type interface and conventional I-type interface were compared by finite element analysis and creep tests,and creep failure mechanisms were investigated by stress-strain analysis and microstructure characterization.By applying double Y-type interface instead of conventional I-type interface,failure location of DMW could be shifted from the WM/ferritic heat-affected zone(HAZ)interface into the ferritic HAZ or even the ferritic BM,and the failure mode change improved the creep life of DMW.The interface premature failure of I-type interface DMW was related to the coupling effect of microstructure degradation,stress and strain concentrations,and oxide notch on the WM/HAZ interface.The creep failure of double Y-type interface DMW was the result of Type IV fracture due to the creep voids and micro-cracks on fine-grain boundaries in HAZ,which was a result of the matrix softening of HAZ and lack of precipitate pinning at fine-grain boundaries.The double Y-type interface form separated the stress and strain concentrations in DMW from the WM/HAZ interface,preventing the trigger effect of oxide notch on interface failure and inhibiting the interfacial microstructure cracking.It is a novel scheme to prolong creep life and enhance reliability of DMW,by means of optimizing the interface form,decoupling the damage factors from WM/HAZ interface,and then changing the failure mechanism and shifting the failure location.展开更多
This study analysed the failure of dissimilar metal welds(DMWs)between ferritic heat resistant steels and austenitic stainless steels and investigated its influencing factors by means of numerical simulation,microstru...This study analysed the failure of dissimilar metal welds(DMWs)between ferritic heat resistant steels and austenitic stainless steels and investigated its influencing factors by means of numerical simulation,microstructure characterization and mechanical property test.Under the long-term high-temperature service condition in practical power plant,the DMW failure mode was along the interface between nickel-based weld metal(WM)and ferritic heat resistant steel,and the failure mechanism was stress/strain concentration,microstructure degradation and oxidation coupling acting on the interface.The numerical simulation results show that interface stress/strain concentration was due to the differences in coefficient of thermal expansion and creep strength,and the degree of stress/strain concentration was related to service time.The ferrite band formed at the WM/ferritic steel interface was prone to cracking,attracting the fracture along the interface.The interface crack allowed oxidation to develop along the WM/ferritic steel interface.During long-term service,the interface stress/strain concentration,microstructure and oxidation all evolved,which synergistically promoted interface failure of DMW.However,only under the long-term service of low stress conditions could trigger the interface failure of DMW.Meanwhile,long-term service would reduce the mechanical strength and plasticity of DMW.展开更多
The joining of Mg alloy to steel was realized by metal inert-gas arc welding, and the weld thermal cycle characteristics and Mg-steel joints were investigated. The results show that the temperature distribution in the...The joining of Mg alloy to steel was realized by metal inert-gas arc welding, and the weld thermal cycle characteristics and Mg-steel joints were investigated. The results show that the temperature distribution in the joints is uneven. Mg alloy welds present a fine equiaxed grain structure. There exists a transition layer consisting mainly of AlFe, AlFe3 and Mg(Fe, Al)2O4 phases at Mg/steel interface, and it is the weakest link in Mg?steel joints. The welding heat input and weld Al content have the significant effect on the joint strength. The joint strength increases with increasing the heat input from 1680 J/cm to 2093 J/cm, due to promoting Mg/steel interface reaction. When weld Al content is increased to 6.20%, the joint strength reaches 192 MPa, 80% of Mg alloy base metal strength. It is favorable to select the suitable welding heat input and weld Al content for improving joint strength.展开更多
The present study is concerned with the effect of filler metals such as austenitic stainless steel, ferritic stainless steel and duplex stainless steel on tensile and impact properties of the ferritic stainless steel ...The present study is concerned with the effect of filler metals such as austenitic stainless steel, ferritic stainless steel and duplex stainless steel on tensile and impact properties of the ferritic stainless steel conforming to AISI 409M grade. Rolled plates of 4 mm thickness were used as the base material for preparing single pass butt welded joints. Tensile and impact properties, microhardness, microstructure and fracture surface morphology of the joints fabricated by austenitic stainless steel, ferritic stainless steel and duplex stainless steel filler metals were evaluated and the results were reported. From this investigation, it is found that the joints fabricated by duplex stainless steel filler metal showed higher tensile strength and hardness compared to the joints fabricated by austenitic and ferritic stainless steel filler metals. Joints fabricated by austenitic stainless steel filler metal exhibited higher ductility and impact toughness compared with the joints fabricated by ferritic stainless steel and duplex stainless steel filler metals.展开更多
The mechanical properties, creep damage, creep rupture strength and features of interfacial failures of welded joints between martensite (SA213T91) and pearlite steel (12Cr1MoV) have been investigated by means of argo...The mechanical properties, creep damage, creep rupture strength and features of interfacial failures of welded joints between martensite (SA213T91) and pearlite steel (12Cr1MoV) have been investigated by means of argon tungsten pulsed arc welding, high temperature accelerated simulation, creep rupture, mechanical property tests and scanning electronic microscope (SEM). The research results indicate that the mechanical properties of overmatched and medium matched joint deteriorate obviously, and they are susceptible to creep damage and failure after accelerated simulation operation 500 h, in the condition of preheat 250℃, and post welding heat treatment 750℃×1 h. However, the mechanical properties of undermatched joint are the best, the interfacial failure tendency of undermatched welded joint is less than those of medium and overmatched welded joint. Therefore, it is reasonable that low alloy material TR31 is used as the filler metal of weld between SA213T91and 12Cr1MoV steel.展开更多
Empirical relationship was developed to predict the fatigue life of gas metal arc welded (GMAW) cruciform joints failing from root region. High strength, age hardenable aluminium alloy of AA7075-T6 grade was used as...Empirical relationship was developed to predict the fatigue life of gas metal arc welded (GMAW) cruciform joints failing from root region. High strength, age hardenable aluminium alloy of AA7075-T6 grade was used as the base material. The design of experiments concept was used to optimize the required number of fatigue testing experiments. Fatigue experiment was conducted in a servo hydraulic controlled fatigue testing machine under constant amplitude loading. The empirical relationship was developed. By using the developed empirical relationship, the fatigue life of GMAW cruciform joints failing from root region was predicted at 95% confidence level. The effect of cruciform joint dimensions on fatigue life was discussed in detail.展开更多
In the present research, 6-mm-thick 5083-H321 aluminum alloy was joined by the double-pulsed gas metal arc welding (DP-GMAW) process. The objective was to investigate the influence of the shielding gas composition o...In the present research, 6-mm-thick 5083-H321 aluminum alloy was joined by the double-pulsed gas metal arc welding (DP-GMAW) process. The objective was to investigate the influence of the shielding gas composition on the microstructure and properties of GMA welds. A macrostructural study indicated that the addition of nitrogen and oxygen to the argon shielding gas resulted in better weld penetration. Furthermore, the tensile strength and bending strength of the welds were improved when oxygen and nitrogen (at concentrations as high as approximately 0. 1vol%) were added to the shielding gas; however, these properties were adversely affected when the oxygen and nitrogen contents were increased further. This behavior was attributed to the formation of excessive brown and black oxide films on the bead surface, the formation of intermetallic compounds in the weld metal, and the formation of thicker oxide layers on the bead surface with increasing nitrogen and oxygen contents in the argon-based shielding gas. Analysis by energy-dispersive X-ray spectroscopy revealed that most of these compounds are nitrides or oxides.展开更多
Metal magnetic memory(MMM) testing has been widely used to detect welded joints. However, load levels, environmental magnetic field, and measurement noises make the MMM data dispersive and bring difficulty to quanti...Metal magnetic memory(MMM) testing has been widely used to detect welded joints. However, load levels, environmental magnetic field, and measurement noises make the MMM data dispersive and bring difficulty to quantitative evaluation. In order to promote the development of quantitative MMM reliability assessment, a new MMM model is presented for welded joints. Steel Q235 welded specimens are tested along the longitudinal and horizontal lines by TSC-2M-8 instrument in the tensile fatigue experiments. The X-ray testing is carried out synchronously to verify the MMM results. It is found that MMM testing can detect the hidden crack earlier than X-ray testing. Moreover, the MMM gradient vector sum K_(vs) is sensitive to the damage degree, especially at early and hidden damage stages. Considering the dispersion of MMM data, the K_(vs) statistical law is investigated, which shows that K_(vs) obeys Gaussian distribution. So K_(vs) is the suitable MMM parameter to establish reliability model of welded joints. At last, the original quantitative MMM reliability model is first presented based on the improved stress strength interference theory. It is shown that the reliability degree R gradually decreases with the decreasing of the residual life ratio T, and the maximal error between prediction reliability degree R_1 and verification reliability degree R_2 is 9.15%. This presented method provides a novel tool of reliability testing and evaluating in practical engineering for welded joints.展开更多
The maximum principal stress, von Mises equivalent stress, equivalent creep strain, stress triaxiality in dissimilar metal welded joints between austenitic(HR3C) and martensitic heat-resistant steel(T91) are simul...The maximum principal stress, von Mises equivalent stress, equivalent creep strain, stress triaxiality in dissimilar metal welded joints between austenitic(HR3C) and martensitic heat-resistant steel(T91) are simulated by FEM at 873 K and under inner pressure of 42.26 MPa. The results show that the maximum principal stress and von Mises equivalent stress are quite high in the vicinity of weld/T91 interface, creep cavities are easy to form and expand in the weld/T91 interface. There are two peaks of equivalent creep strains in welded joint, and the maximum equivalent creep strain is in the place 27-32 mm away from the weld/T91 interface, and there exists creep constrain region in the vicinity of weld/T91 interface. The high stress triaxiality peak is located exactly at the weld/T91 interface. Accordingly, the weld/T91 interface is the weakest site of welded joint. Therefore, using stress triaxiality to describe creep cavity nucleation and expansion and crack development is reasonable for the dissimilar metal welded joint between austenitic and martensitic steel.展开更多
The existence of residual austenite in weld metal plays an important role in determining the properties and dimensional accuracy of welded rotors. An effective corrosive agent and the metallographic etching process we...The existence of residual austenite in weld metal plays an important role in determining the properties and dimensional accuracy of welded rotors. An effective corrosive agent and the metallographic etching process were developed to clearly reveal the characteristics of residual austenite in the weld metal of a 9Cr1MoNbV welded rotor. Moreover, the details of the distribution, shape, length, length-to-width ratio, and the content of residual austenite were systematically characterized using the Image-Pro Plus image analysis software. The results revealed that the area fraction of residual austenite was approximately 6.3% in the observed weld seam; the average area, length, and length-to-width ratio of dispersed residual austenite were quantitatively evaluated to be (5.5 ± 0.1)μm2, (5.0 ± 0.1)μm, and (2.2 ± 0.1), re-spectively. The newly developed corrosive agent and etching method offer an appropriate approach to characterize residual austenite in the weld metal of welded rotors in detail.展开更多
The mechanical mismatch effect frequently occurs in the dissimilar materials welded joints, thus leading to plastic gradient at the interface between the weld and heat-affected zone(HAZ). In this work, the boron steel...The mechanical mismatch effect frequently occurs in the dissimilar materials welded joints, thus leading to plastic gradient at the interface between the weld and heat-affected zone(HAZ). In this work, the boron steel and Q235 steel were selected for laser tailor welding,which obtained boron/Q235 steel tailor-welded blanks(TWBs). The method of welding with synchronous thermal field(WSTF) was utilized to eliminate the mismatch effects in TWBs. The WSTF was employed to adjust cooling rates of welded joints, thereby intervening in the solidification behaviors and phase transition of the molten pool. Boron/Q235 steel was welded by laser under conventional and WSTF(300-600 ℃) conditions, respectively. The results show that the microstructure of weld and HAZ(boron) was adequately transitioned to ferrites and pearlites instead of abundant martensite by WSTF. Meanwhile, the discrepancy of microhardness and yield strength between various regions of welded joints was greatly reduced, and the overall plasticity of welded joints was enhanced by WSTF. It is indicated that WSTF can effectively contribute to reducing plastic gradient and achieving mechanical congruity in welded joints by restraining the generation of hardbrittle phase, which could significantly improve the formability of TWBs in subsequent hot stamping.展开更多
Welded joint impact performances of low-alloy carbon steel plates welded by full-automatic gas metal arc welding (GMAW) were evaluated. To clarity the effect of impact temperature on impact properties of weld metal ...Welded joint impact performances of low-alloy carbon steel plates welded by full-automatic gas metal arc welding (GMAW) were evaluated. To clarity the effect of impact temperature on impact properties of weld metal (WM) and heat- affected zone ( HAZ), Charpy V impact tests at different temperatures and fracture surface analysis were carried out. The Charpy V impact energy decreases with the decreasing test temperature both for the WM and HAZ, while the proportion of crystal zone on WM and HAZ impact fracture surface increases with the decreasing test temperature. Research results indicate that the welding defects (void and slag) make the impact energy of WM more scattered and lower than that of HAZ.展开更多
Gas metal arc welding experiments were conducted on two types of steels with 0.41% carbon equivalent(Ceq) and 0.31% Cequsing WER70T wire and 20% CO_(2)and 80% Ar as shielding gas.The two types of steels show satisfact...Gas metal arc welding experiments were conducted on two types of steels with 0.41% carbon equivalent(Ceq) and 0.31% Cequsing WER70T wire and 20% CO_(2)and 80% Ar as shielding gas.The two types of steels show satisfactory weldability.The transition temperatures of 50% upper shelf energy(Tk0.5) for Charpy-V impact test of both the welded joints are below-40 ℃.However, the toughness of the fusion line zone and heat-affected zone(HAZ) of the two steel joints exhibits differences, with the toughness of 0.41% Ceqsteel being better than that of 0.31% Ceqsteel.The Tk0.5of the fusion line zone and the HAZ of 0.41% Ceqsteel is below-60℃,whereas that of 0.31% Ceqsteel is above-40℃.The welded joint of 0.41% Ceqsteel has low hardness fluctuation, while that of 0.31% Ceqsteel exhibits a narrow, softened zone, which has no obvious influence on the tested tensile strength.The coarse grain heat-affected zone(CGHAZ)microstructure of 0.41% Ceqsteel is bainite, while that of 0.31% Ceqsteel is bainite with ferrite and minor pearlite.展开更多
According to the differences in melting point between aluminum alloy and steel, 6013-T4 aluminum alloy was joined to galvanized steel by large spot Nd:YAG laser + MIG arc hybrid brazing-fusion welding with ER4043(A...According to the differences in melting point between aluminum alloy and steel, 6013-T4 aluminum alloy was joined to galvanized steel by large spot Nd:YAG laser + MIG arc hybrid brazing-fusion welding with ER4043(AlSi5) filler wire. The microstructures and mechanical properties of the brazed-fusion welded joint were investigated. The joint is divided into two parts of fusion weld and brazed seam. There is a zinc-rich zone at fusion weld toe, which consists of α(Al)-Zn solid solution and Al-Zn eutectic. The brazed seam is the Fe-Al intermetallic compounds (IMCs) layer of 2-4μm in thickness, and the IMCs include FeAl2, Fe2Al5 and Fe4Al13. FeAl2 and Fe2Al5 are located in the compact reaction layer near the steel side, and Fe4Al13 with tongue shape or sawtooth shape grows towards the fusion weld. The tensile strength of the joint firstly increases and then decreases as the welding current and laser power increase, the highest tensile strength can be up to 247.3 MPa, and the fracture usually occurs at fusion zone of the fusion weld. The hardness is the highest at the brazed seam because of hard Fe-Al IMCs, and gradually decreases along the fusion weld and galvanized steel, respectively.展开更多
Wrought magnesium alloy sheets were butt welded with gas metal arc welding process. Pores in the weld were investigated under different welding parameters, the causes of pore formation were systematically disposed, an...Wrought magnesium alloy sheets were butt welded with gas metal arc welding process. Pores in the weld were investigated under different welding parameters, the causes of pore formation were systematically disposed, and the effects of porosity on the microstructure and mechanical properties of the joint were analyzed. The microstructure examination shows that the pores mainly appear close to the top or bottom part of the weld, and could connect to each other and lead to the formation of cracks in the welds. However, the pores can be controlled with proper welding parameters. The tensile testing results reveal that the average joint strength is close to or higher than that of the base metal. The microhardness in the weld can be even higher than that in the base metal due to the second ohase strengthening of β-Mg17(A1, Zn)12 formed in the weld.展开更多
It was found that hydrogen induced delayed failure could occur in 308L and 347L weld metals,and the threshold stress intensities of 308L and 347L welds were lower than that of 304L austenitic stainless steel.When dyn...It was found that hydrogen induced delayed failure could occur in 308L and 347L weld metals,and the threshold stress intensities of 308L and 347L welds were lower than that of 304L austenitic stainless steel.When dynamically charged under load on a single edge notched specimen,the threshold stress intensities of 308L,347L and 304L decrease with the increase in the diffusible hydrogen content C 0 and the experimental results are as follows:K ⅠH =85.2-10.7 ln C 0 (308L),K ⅠH =76.1-9.3 ln C 0 (347L),K ⅠH =91.7-10.1 ln C 0 (304L).The morphology of the hydrogen induced delayed fracture in the three materials are correlated with the K Ⅰ and C 0 values.展开更多
The experiments of laser fusion welding with Al-foil addition was carried out for DP590 dual-phase steel and AZ31B magnesium alloy in an overlap steel-on-magnesium configuration.Temperature field was simulated by COMS...The experiments of laser fusion welding with Al-foil addition was carried out for DP590 dual-phase steel and AZ31B magnesium alloy in an overlap steel-on-magnesium configuration.Temperature field was simulated by COMSOL finite element software for steel/magnesium laser fusion welding.The results show that when Al-foil is added,some defects,such as pores,cracks and softening in heat affected zone(HAZ),can be avoided in welding joint,the bonding strength of steel/magnesium joints is increased,heat transfer between steel and magnesium is regulated.In the case of adding Al-foil,welding pool is divided into two parts,the upper and lower pools contact each other but do not mix,the transition layer at the interface between the upper and lower molten pools mainly contains Al−Fe phases,such as AlFe,Al2Fe and AlFe3,and these new phases are helpful for promoting the metallurgical connection between the upper and lower molten pools.Hence,adding Al-foil laser fusion welding is an effective way in joining steel to magnesium alloy.展开更多
The effects of major alloying elements on the Ac, temperature in P92 steel weld metal were evaluated by Thermo- Calc, and a formula relating Ac1 to the content of major alloying elements was developed using multiple r...The effects of major alloying elements on the Ac, temperature in P92 steel weld metal were evaluated by Thermo- Calc, and a formula relating Ac1 to the content of major alloying elements was developed using multiple regression method. Results show that both C and N reduce Ac, temperature in weld metal, the effect of N on Ac, is greater than that of C, but their influence on Act is not so significant when they individually vary in the specified chemical composition ranges. Si, Cr, Mo and W increase the Acl temperature, and the descending order of their effects is determined as Si, Mo, W, Cr. Mn and Ni decrease the AcI in weld metal, the decreasing effect is especially remarkable when the ( Mn + Ni) ≥ 1%. The effect of Co is moderate and is much smaller compared to Ni. The variations of Acl for the ranges of micro-alloying elements Nb and V are also evaluated, the effect of V is greater compared to Nb and the effect of Nb could be ignored in the specified chemical composition range. A prediction formula for Ac, temperature in P92 steel weld metal within the specified chemical composition ranges was developed based on the comprehensive consideration of the calculated Ac, temperatures and the experimentally measured results.展开更多
The effects of Ce, Ti, Nb and C on the microstructures and mechanical properties of Ni Fe weld metal and the mechanism of their strengthening are discussed. Ce has the effect on graphite morphology and weld metal wit...The effects of Ce, Ti, Nb and C on the microstructures and mechanical properties of Ni Fe weld metal and the mechanism of their strengthening are discussed. Ce has the effect on graphite morphology and weld metal with spheroidal graphite has higher mechanical properties. The proper contents of Ti and Nb obviously increase the tensile strength of Ni Fe weld metal, which is mainly attributed to the austenite grain refining and second phase (TiC and NbC) strengthening. The excess C in weld metal results in increasing the quantity of carbide and graphite precipitating along the austenite grain boundary and decreasing the mechanical properties of Ni Fe weld metal.展开更多
The microstructure,texture,and yield strength of an advanced heat-resistant alloy weldment made with composition-matched weld filler were investigated.Scanning electron microscopy,energy dispersive spectroscopy,and el...The microstructure,texture,and yield strength of an advanced heat-resistant alloy weldment made with composition-matched weld filler were investigated.Scanning electron microscopy,energy dispersive spectroscopy,and electron backscatter diffraction were used to characterize the microstructural and textural changes.Various grain boundary engineering(GBE)processes were performed on the weldment.The yield strengths of the weldment at 973 K were obtained before and after GBE processing,and were mostly consistent with the theoretically predicted values.The coincident-site lattices,misorientation,and recrystallization of the weld metal after GBE were analyzed,and the results indicate that the increase in dislocation density and the improvement in special grain boundaries in the weld metal are the main reasons for the yield strength elevation of the weldment after GBE.The variation in elongation after high-temperature tests has the same tendency as that in the impact toughness with different GBE parameters,which is related to the coarsening behavior of carbides.展开更多
基金Supported by Youth Elite Project of CNNC and Modular HTGR Super-critical Power Generation Technology Collaborative Project between CNNC and Tsinghua University Project of China(Grant No.ZHJTIZYFGWD20201).
文摘For dissimilar metal welds(DMWs)involving nickel-based weld metal(WM)and ferritic heat resistant steel base metal(BM)in power plants,there must be an interface between WM and BM,and this interface suffers mechanical and microstructure mismatches and is often the rupture location of premature failure.In this study,a new form of WM/BM interface form,namely double Y-type interface was designed for the DMWs.Creep behaviors and life of DMWs containing double Y-type interface and conventional I-type interface were compared by finite element analysis and creep tests,and creep failure mechanisms were investigated by stress-strain analysis and microstructure characterization.By applying double Y-type interface instead of conventional I-type interface,failure location of DMW could be shifted from the WM/ferritic heat-affected zone(HAZ)interface into the ferritic HAZ or even the ferritic BM,and the failure mode change improved the creep life of DMW.The interface premature failure of I-type interface DMW was related to the coupling effect of microstructure degradation,stress and strain concentrations,and oxide notch on the WM/HAZ interface.The creep failure of double Y-type interface DMW was the result of Type IV fracture due to the creep voids and micro-cracks on fine-grain boundaries in HAZ,which was a result of the matrix softening of HAZ and lack of precipitate pinning at fine-grain boundaries.The double Y-type interface form separated the stress and strain concentrations in DMW from the WM/HAZ interface,preventing the trigger effect of oxide notch on interface failure and inhibiting the interfacial microstructure cracking.It is a novel scheme to prolong creep life and enhance reliability of DMW,by means of optimizing the interface form,decoupling the damage factors from WM/HAZ interface,and then changing the failure mechanism and shifting the failure location.
基金Supported by Youth Elite Project of CNNC and Modular HTGR Super-critical Power Generation Technology collaborative project between CNNC and Tsinghua University Project (Grant No.ZHJTIZYFGWD20201)。
文摘This study analysed the failure of dissimilar metal welds(DMWs)between ferritic heat resistant steels and austenitic stainless steels and investigated its influencing factors by means of numerical simulation,microstructure characterization and mechanical property test.Under the long-term high-temperature service condition in practical power plant,the DMW failure mode was along the interface between nickel-based weld metal(WM)and ferritic heat resistant steel,and the failure mechanism was stress/strain concentration,microstructure degradation and oxidation coupling acting on the interface.The numerical simulation results show that interface stress/strain concentration was due to the differences in coefficient of thermal expansion and creep strength,and the degree of stress/strain concentration was related to service time.The ferrite band formed at the WM/ferritic steel interface was prone to cracking,attracting the fracture along the interface.The interface crack allowed oxidation to develop along the WM/ferritic steel interface.During long-term service,the interface stress/strain concentration,microstructure and oxidation all evolved,which synergistically promoted interface failure of DMW.However,only under the long-term service of low stress conditions could trigger the interface failure of DMW.Meanwhile,long-term service would reduce the mechanical strength and plasticity of DMW.
文摘The joining of Mg alloy to steel was realized by metal inert-gas arc welding, and the weld thermal cycle characteristics and Mg-steel joints were investigated. The results show that the temperature distribution in the joints is uneven. Mg alloy welds present a fine equiaxed grain structure. There exists a transition layer consisting mainly of AlFe, AlFe3 and Mg(Fe, Al)2O4 phases at Mg/steel interface, and it is the weakest link in Mg?steel joints. The welding heat input and weld Al content have the significant effect on the joint strength. The joint strength increases with increasing the heat input from 1680 J/cm to 2093 J/cm, due to promoting Mg/steel interface reaction. When weld Al content is increased to 6.20%, the joint strength reaches 192 MPa, 80% of Mg alloy base metal strength. It is favorable to select the suitable welding heat input and weld Al content for improving joint strength.
文摘The present study is concerned with the effect of filler metals such as austenitic stainless steel, ferritic stainless steel and duplex stainless steel on tensile and impact properties of the ferritic stainless steel conforming to AISI 409M grade. Rolled plates of 4 mm thickness were used as the base material for preparing single pass butt welded joints. Tensile and impact properties, microhardness, microstructure and fracture surface morphology of the joints fabricated by austenitic stainless steel, ferritic stainless steel and duplex stainless steel filler metals were evaluated and the results were reported. From this investigation, it is found that the joints fabricated by duplex stainless steel filler metal showed higher tensile strength and hardness compared to the joints fabricated by austenitic and ferritic stainless steel filler metals. Joints fabricated by austenitic stainless steel filler metal exhibited higher ductility and impact toughness compared with the joints fabricated by ferritic stainless steel and duplex stainless steel filler metals.
文摘The mechanical properties, creep damage, creep rupture strength and features of interfacial failures of welded joints between martensite (SA213T91) and pearlite steel (12Cr1MoV) have been investigated by means of argon tungsten pulsed arc welding, high temperature accelerated simulation, creep rupture, mechanical property tests and scanning electronic microscope (SEM). The research results indicate that the mechanical properties of overmatched and medium matched joint deteriorate obviously, and they are susceptible to creep damage and failure after accelerated simulation operation 500 h, in the condition of preheat 250℃, and post welding heat treatment 750℃×1 h. However, the mechanical properties of undermatched joint are the best, the interfacial failure tendency of undermatched welded joint is less than those of medium and overmatched welded joint. Therefore, it is reasonable that low alloy material TR31 is used as the filler metal of weld between SA213T91and 12Cr1MoV steel.
文摘Empirical relationship was developed to predict the fatigue life of gas metal arc welded (GMAW) cruciform joints failing from root region. High strength, age hardenable aluminium alloy of AA7075-T6 grade was used as the base material. The design of experiments concept was used to optimize the required number of fatigue testing experiments. Fatigue experiment was conducted in a servo hydraulic controlled fatigue testing machine under constant amplitude loading. The empirical relationship was developed. By using the developed empirical relationship, the fatigue life of GMAW cruciform joints failing from root region was predicted at 95% confidence level. The effect of cruciform joint dimensions on fatigue life was discussed in detail.
文摘In the present research, 6-mm-thick 5083-H321 aluminum alloy was joined by the double-pulsed gas metal arc welding (DP-GMAW) process. The objective was to investigate the influence of the shielding gas composition on the microstructure and properties of GMA welds. A macrostructural study indicated that the addition of nitrogen and oxygen to the argon shielding gas resulted in better weld penetration. Furthermore, the tensile strength and bending strength of the welds were improved when oxygen and nitrogen (at concentrations as high as approximately 0. 1vol%) were added to the shielding gas; however, these properties were adversely affected when the oxygen and nitrogen contents were increased further. This behavior was attributed to the formation of excessive brown and black oxide films on the bead surface, the formation of intermetallic compounds in the weld metal, and the formation of thicker oxide layers on the bead surface with increasing nitrogen and oxygen contents in the argon-based shielding gas. Analysis by energy-dispersive X-ray spectroscopy revealed that most of these compounds are nitrides or oxides.
基金Supported by National Natural Science Foundation of China(Grant Nos.11272084,11472076)PetroChina Innovation Foundation(Grant No.2015D-5006-0602)Postdoctoral Science Research Developmental Foundation of Chinese Heilongjiang Province(Grant No.LBH-Q13035)
文摘Metal magnetic memory(MMM) testing has been widely used to detect welded joints. However, load levels, environmental magnetic field, and measurement noises make the MMM data dispersive and bring difficulty to quantitative evaluation. In order to promote the development of quantitative MMM reliability assessment, a new MMM model is presented for welded joints. Steel Q235 welded specimens are tested along the longitudinal and horizontal lines by TSC-2M-8 instrument in the tensile fatigue experiments. The X-ray testing is carried out synchronously to verify the MMM results. It is found that MMM testing can detect the hidden crack earlier than X-ray testing. Moreover, the MMM gradient vector sum K_(vs) is sensitive to the damage degree, especially at early and hidden damage stages. Considering the dispersion of MMM data, the K_(vs) statistical law is investigated, which shows that K_(vs) obeys Gaussian distribution. So K_(vs) is the suitable MMM parameter to establish reliability model of welded joints. At last, the original quantitative MMM reliability model is first presented based on the improved stress strength interference theory. It is shown that the reliability degree R gradually decreases with the decreasing of the residual life ratio T, and the maximal error between prediction reliability degree R_1 and verification reliability degree R_2 is 9.15%. This presented method provides a novel tool of reliability testing and evaluating in practical engineering for welded joints.
基金Funded by the National Natural Science Foundation of China(No.51374154)
文摘The maximum principal stress, von Mises equivalent stress, equivalent creep strain, stress triaxiality in dissimilar metal welded joints between austenitic(HR3C) and martensitic heat-resistant steel(T91) are simulated by FEM at 873 K and under inner pressure of 42.26 MPa. The results show that the maximum principal stress and von Mises equivalent stress are quite high in the vicinity of weld/T91 interface, creep cavities are easy to form and expand in the weld/T91 interface. There are two peaks of equivalent creep strains in welded joint, and the maximum equivalent creep strain is in the place 27-32 mm away from the weld/T91 interface, and there exists creep constrain region in the vicinity of weld/T91 interface. The high stress triaxiality peak is located exactly at the weld/T91 interface. Accordingly, the weld/T91 interface is the weakest site of welded joint. Therefore, using stress triaxiality to describe creep cavity nucleation and expansion and crack development is reasonable for the dissimilar metal welded joint between austenitic and martensitic steel.
文摘The existence of residual austenite in weld metal plays an important role in determining the properties and dimensional accuracy of welded rotors. An effective corrosive agent and the metallographic etching process were developed to clearly reveal the characteristics of residual austenite in the weld metal of a 9Cr1MoNbV welded rotor. Moreover, the details of the distribution, shape, length, length-to-width ratio, and the content of residual austenite were systematically characterized using the Image-Pro Plus image analysis software. The results revealed that the area fraction of residual austenite was approximately 6.3% in the observed weld seam; the average area, length, and length-to-width ratio of dispersed residual austenite were quantitatively evaluated to be (5.5 ± 0.1)μm2, (5.0 ± 0.1)μm, and (2.2 ± 0.1), re-spectively. The newly developed corrosive agent and etching method offer an appropriate approach to characterize residual austenite in the weld metal of welded rotors in detail.
基金the Natural Science Foundation of Fujian Province(2021J01299)school-enterprise cooperation project supported by Shandong Hongao Automotive Lightweight Technology Co.,Ltd.
文摘The mechanical mismatch effect frequently occurs in the dissimilar materials welded joints, thus leading to plastic gradient at the interface between the weld and heat-affected zone(HAZ). In this work, the boron steel and Q235 steel were selected for laser tailor welding,which obtained boron/Q235 steel tailor-welded blanks(TWBs). The method of welding with synchronous thermal field(WSTF) was utilized to eliminate the mismatch effects in TWBs. The WSTF was employed to adjust cooling rates of welded joints, thereby intervening in the solidification behaviors and phase transition of the molten pool. Boron/Q235 steel was welded by laser under conventional and WSTF(300-600 ℃) conditions, respectively. The results show that the microstructure of weld and HAZ(boron) was adequately transitioned to ferrites and pearlites instead of abundant martensite by WSTF. Meanwhile, the discrepancy of microhardness and yield strength between various regions of welded joints was greatly reduced, and the overall plasticity of welded joints was enhanced by WSTF. It is indicated that WSTF can effectively contribute to reducing plastic gradient and achieving mechanical congruity in welded joints by restraining the generation of hardbrittle phase, which could significantly improve the formability of TWBs in subsequent hot stamping.
文摘Welded joint impact performances of low-alloy carbon steel plates welded by full-automatic gas metal arc welding (GMAW) were evaluated. To clarity the effect of impact temperature on impact properties of weld metal (WM) and heat- affected zone ( HAZ), Charpy V impact tests at different temperatures and fracture surface analysis were carried out. The Charpy V impact energy decreases with the decreasing test temperature both for the WM and HAZ, while the proportion of crystal zone on WM and HAZ impact fracture surface increases with the decreasing test temperature. Research results indicate that the welding defects (void and slag) make the impact energy of WM more scattered and lower than that of HAZ.
文摘Gas metal arc welding experiments were conducted on two types of steels with 0.41% carbon equivalent(Ceq) and 0.31% Cequsing WER70T wire and 20% CO_(2)and 80% Ar as shielding gas.The two types of steels show satisfactory weldability.The transition temperatures of 50% upper shelf energy(Tk0.5) for Charpy-V impact test of both the welded joints are below-40 ℃.However, the toughness of the fusion line zone and heat-affected zone(HAZ) of the two steel joints exhibits differences, with the toughness of 0.41% Ceqsteel being better than that of 0.31% Ceqsteel.The Tk0.5of the fusion line zone and the HAZ of 0.41% Ceqsteel is below-60℃,whereas that of 0.31% Ceqsteel is above-40℃.The welded joint of 0.41% Ceqsteel has low hardness fluctuation, while that of 0.31% Ceqsteel exhibits a narrow, softened zone, which has no obvious influence on the tested tensile strength.The coarse grain heat-affected zone(CGHAZ)microstructure of 0.41% Ceqsteel is bainite, while that of 0.31% Ceqsteel is bainite with ferrite and minor pearlite.
基金Project (50905099) supported by the National Natural Science Foundation of ChinaProject (20090131120027) supported by the Specialized Research Fund for the Doctoral Program of Higher Education,China
文摘According to the differences in melting point between aluminum alloy and steel, 6013-T4 aluminum alloy was joined to galvanized steel by large spot Nd:YAG laser + MIG arc hybrid brazing-fusion welding with ER4043(AlSi5) filler wire. The microstructures and mechanical properties of the brazed-fusion welded joint were investigated. The joint is divided into two parts of fusion weld and brazed seam. There is a zinc-rich zone at fusion weld toe, which consists of α(Al)-Zn solid solution and Al-Zn eutectic. The brazed seam is the Fe-Al intermetallic compounds (IMCs) layer of 2-4μm in thickness, and the IMCs include FeAl2, Fe2Al5 and Fe4Al13. FeAl2 and Fe2Al5 are located in the compact reaction layer near the steel side, and Fe4Al13 with tongue shape or sawtooth shape grows towards the fusion weld. The tensile strength of the joint firstly increases and then decreases as the welding current and laser power increase, the highest tensile strength can be up to 247.3 MPa, and the fracture usually occurs at fusion zone of the fusion weld. The hardness is the highest at the brazed seam because of hard Fe-Al IMCs, and gradually decreases along the fusion weld and galvanized steel, respectively.
基金Project (09009) supported by the State Key Laboratory of Advanced Welding and Joining,Harbin Institute of Technology,China
文摘Wrought magnesium alloy sheets were butt welded with gas metal arc welding process. Pores in the weld were investigated under different welding parameters, the causes of pore formation were systematically disposed, and the effects of porosity on the microstructure and mechanical properties of the joint were analyzed. The microstructure examination shows that the pores mainly appear close to the top or bottom part of the weld, and could connect to each other and lead to the formation of cracks in the welds. However, the pores can be controlled with proper welding parameters. The tensile testing results reveal that the average joint strength is close to or higher than that of the base metal. The microhardness in the weld can be even higher than that in the base metal due to the second ohase strengthening of β-Mg17(A1, Zn)12 formed in the weld.
基金Special Fund for the Major Basic Research Projects(No.G1 9990 650 )
文摘It was found that hydrogen induced delayed failure could occur in 308L and 347L weld metals,and the threshold stress intensities of 308L and 347L welds were lower than that of 304L austenitic stainless steel.When dynamically charged under load on a single edge notched specimen,the threshold stress intensities of 308L,347L and 304L decrease with the increase in the diffusible hydrogen content C 0 and the experimental results are as follows:K ⅠH =85.2-10.7 ln C 0 (308L),K ⅠH =76.1-9.3 ln C 0 (347L),K ⅠH =91.7-10.1 ln C 0 (304L).The morphology of the hydrogen induced delayed fracture in the three materials are correlated with the K Ⅰ and C 0 values.
基金Projects(51774125,51674112)supported by the National Natural Science Foundation of ChinaProject(2018YFB1107905)supported by the National Key Research and Development Program of China。
文摘The experiments of laser fusion welding with Al-foil addition was carried out for DP590 dual-phase steel and AZ31B magnesium alloy in an overlap steel-on-magnesium configuration.Temperature field was simulated by COMSOL finite element software for steel/magnesium laser fusion welding.The results show that when Al-foil is added,some defects,such as pores,cracks and softening in heat affected zone(HAZ),can be avoided in welding joint,the bonding strength of steel/magnesium joints is increased,heat transfer between steel and magnesium is regulated.In the case of adding Al-foil,welding pool is divided into two parts,the upper and lower pools contact each other but do not mix,the transition layer at the interface between the upper and lower molten pools mainly contains Al−Fe phases,such as AlFe,Al2Fe and AlFe3,and these new phases are helpful for promoting the metallurgical connection between the upper and lower molten pools.Hence,adding Al-foil laser fusion welding is an effective way in joining steel to magnesium alloy.
基金This work was supported by National Natural Science Foundation of China( No. 51074113 ), the Fundamental Research Funds for the Central Universities ( No. 115005 ).
文摘The effects of major alloying elements on the Ac, temperature in P92 steel weld metal were evaluated by Thermo- Calc, and a formula relating Ac1 to the content of major alloying elements was developed using multiple regression method. Results show that both C and N reduce Ac, temperature in weld metal, the effect of N on Ac, is greater than that of C, but their influence on Act is not so significant when they individually vary in the specified chemical composition ranges. Si, Cr, Mo and W increase the Acl temperature, and the descending order of their effects is determined as Si, Mo, W, Cr. Mn and Ni decrease the AcI in weld metal, the decreasing effect is especially remarkable when the ( Mn + Ni) ≥ 1%. The effect of Co is moderate and is much smaller compared to Ni. The variations of Acl for the ranges of micro-alloying elements Nb and V are also evaluated, the effect of V is greater compared to Nb and the effect of Nb could be ignored in the specified chemical composition range. A prediction formula for Ac, temperature in P92 steel weld metal within the specified chemical composition ranges was developed based on the comprehensive consideration of the calculated Ac, temperatures and the experimentally measured results.
文摘The effects of Ce, Ti, Nb and C on the microstructures and mechanical properties of Ni Fe weld metal and the mechanism of their strengthening are discussed. Ce has the effect on graphite morphology and weld metal with spheroidal graphite has higher mechanical properties. The proper contents of Ti and Nb obviously increase the tensile strength of Ni Fe weld metal, which is mainly attributed to the austenite grain refining and second phase (TiC and NbC) strengthening. The excess C in weld metal results in increasing the quantity of carbide and graphite precipitating along the austenite grain boundary and decreasing the mechanical properties of Ni Fe weld metal.
基金Project(51475326)supported by the National Natural Science Foundation of ChinaProject(BHSF2017-22)supported by the Demonstration Program of National Marine Economic Innovation of Tianjin City,China。
文摘The microstructure,texture,and yield strength of an advanced heat-resistant alloy weldment made with composition-matched weld filler were investigated.Scanning electron microscopy,energy dispersive spectroscopy,and electron backscatter diffraction were used to characterize the microstructural and textural changes.Various grain boundary engineering(GBE)processes were performed on the weldment.The yield strengths of the weldment at 973 K were obtained before and after GBE processing,and were mostly consistent with the theoretically predicted values.The coincident-site lattices,misorientation,and recrystallization of the weld metal after GBE were analyzed,and the results indicate that the increase in dislocation density and the improvement in special grain boundaries in the weld metal are the main reasons for the yield strength elevation of the weldment after GBE.The variation in elongation after high-temperature tests has the same tendency as that in the impact toughness with different GBE parameters,which is related to the coarsening behavior of carbides.