The new technology of welding with impacting rotation is put forward to decrease the wave-like deformation of the TC4 thin plate weldment. The thermal stress and strain are vital to understand the mechanism of control...The new technology of welding with impacting rotation is put forward to decrease the wave-like deformation of the TC4 thin plate weldment. The thermal stress and strain are vital to understand the mechanism of controlling the wave-like deformation. In order to know the development of internal thermal stress and strain, finite element method is utilized for- the stress and strain are difficult to be investigated by experimental methods during the welding process. Temperature field, thermal stress evolution and distortion of thin plate are compared with the test results such as weld thermal cycle, residual stress sectioning measurement, and the deflection of the thin plate respectively. By the finite element analysis and test results verification, the meehaaism of the technology to control the wave-like deformation is brought forward, non-uniform thermal elastic strain between compressive plastic region and elastic extensive region is diminished by a certain amount of extensive plastic deformation by welding with impacting rotation process.展开更多
In order to study how welding parameters affect welding quality and droplet transfer, a synchronous acquisition and analysis system is established to acquire and analyze electrical signal and instantaneous images of d...In order to study how welding parameters affect welding quality and droplet transfer, a synchronous acquisition and analysis system is established to acquire and analyze electrical signal and instantaneous images of droplet transfer simultaneously, which is based on a self-developed soft-switching inverter. On the one hand, welding current and voltage signals are acquired and analyzed by a self-developed dynamic wavelet analyzer. On the other hand, images are filtered and optimized after they are captured by high-speed camera. The results show that instantaneous waveforms and statistical data of electrical signal contribute to make an overall assessment of welding quality, and that optimized high-speed images allow a visual and clear observation of droplet transfer process. The analysis of both waveforms and images leads to a further research on droplet transfer mechanism and provides a basis for precise control of droplet transfer.展开更多
Using finite analysis element software, the transient displacement field of automatic submerged arc welding is established. It was also considered that the thermal physical properties changes were depended on the temp...Using finite analysis element software, the transient displacement field of automatic submerged arc welding is established. It was also considered that the thermal physical properties changes were depended on the temperatureand the heat loss on the surface. At the same time, it analyzed the influence of the deformation and stress, whichgenerated in the plate butt-welding process, to the superstructure steel welding deformation. The result showedthat the deformation and stress generated in the steel plate butt-welding process are considered to be the mainfactors to influence the welding deformation of superstructure steel. It found the effective ways to reduce the weldingdeformation of the hull superstructure steel is to relieve the butt-welding deformation and release butt-welding stressbefore welding the hull superstructure steel.展开更多
A controller based on a PID neural network (PIDNN) is proposed for an arc welding power source whose output characteristic in responding to a given value is quickly and intelligently controlled in the welding proces...A controller based on a PID neural network (PIDNN) is proposed for an arc welding power source whose output characteristic in responding to a given value is quickly and intelligently controlled in the welding process. The new method syncretizes the PID control strategy and neural network to control the welding process intelligently, so it has the merit of PID control rules and the trait of better information disposal ability of the neural network. The results of simulation show that the controller has the properties of quick response, low overshoot, quick convergence and good stable accuracy, which meet the requirements for control of the welding process.展开更多
The controlled pulse waveform is newly applied in keyhole plasma arc welding process. Two additional descending slopes can guarantee stable and smooth transition of keyhole closing and opening periodically. To develop...The controlled pulse waveform is newly applied in keyhole plasma arc welding process. Two additional descending slopes can guarantee stable and smooth transition of keyhole closing and opening periodically. To develop a closed-loop control system for this special welding process, the key point is the determination of system input and output variables. The averaged efflux plasma voltage during a pulse cycle is defined as the characteristic variable reflecting the real keyhole dimension. Research and experiments are conducted to explore the relationship between the characteristic variable and weld pe^Cormance. Results show that alternated peak current can significantly change the keyhole dimension and the penetration. It is proposed that the keyhole average dimension is taken as the controlled variable, and the peak pulse current value and slopes are taken as control variables.展开更多
Mild steel plates of thicknesses 0.5 mm,0.6 mm,0.7 mm,0.8 mm,0.9 mm and 1.0 mm were prepared as test samples.After welding with the developed welding robot and manual electric arc welding machine these test samples we...Mild steel plates of thicknesses 0.5 mm,0.6 mm,0.7 mm,0.8 mm,0.9 mm and 1.0 mm were prepared as test samples.After welding with the developed welding robot and manual electric arc welding machine these test samples were subjected to Tensile Strength and Hardness tests.All data obtained including hardness,load and extension were analyzed and the data produced from electric arc welding operations,the robot welding operations and un-welded plates(control)were compared with one another.The statistical analyses of hardness,load and extension tests for developed welding robot,manual electric arc welding and un-welded(control)mild steel plates of different thicknesses were carried out.The results revealed that for hardness,the developed robot welding has the highest mean value of 115.30,standard deviation value of 14.32 and variance value of 205.06.The descriptive statistics of the load showed that the developed robot welding samples collectively have the lowest mean value of 2,536.85,standard deviation value of 704.21 and variance value of 495,911.72.The descriptive statistics of the extension in which the developed robot welding samples collectively have the lowest mean value of 1.29,standard deviation value of 0.43 and variance value of 0.18 were also determined.The result for hardness showed homogeneity of variance among hardness tests of the samples,which implies variation in the hardness test among the tests of the samples since p-value is 0.038.While the result for loads shows homogeneity of variance among loads of the samples in which the result reveals that there is no variation in the loads among the tests of the samples since p-value is 0.322.The result for extension shows homogeneity of variance among extensions of the samples in which it revealed that there is variation in the extensions among the tests of the samples since p-value is 0.011.The analysis of variance(ANOVA)test result revealed that there is a significant difference in the hardness of the samples in which developed robot welding operation gave the highest hardness compared with electric arc welding and un-welded(CONTROL)since p-value is 0.028.The ANOVA test result for load revealed that there is no significant difference in the loads of the samples since p-value is 0.51.The ANOVA test result of the extension shows that there is a significant difference in the extension of the samples in which developed robot welding operation gave the lowest extension compared with electric arc welding and un-welded(CONTROL)since p-value is 0.001.The results of hardness also showed the mean difference of 16.48 between developed robot welding and un-welded(CONTROL)samples and 7.26 between developed robot welding and electric arc welding samples.Finally,for extension the mean difference of-5.28 between developed robot welding and un-welded(CONTROL)samples and-1.22 between developed robot welding and electric arc welding samples were established.展开更多
Crimping is used in production of large diameter submerged-arc welding pipes. Many researches are focused on crimping in certain manufacturing mode of welding pipe. The application scopes of research achievements beco...Crimping is used in production of large diameter submerged-arc welding pipes. Many researches are focused on crimping in certain manufacturing mode of welding pipe. The application scopes of research achievements become limited due to lack of uniformity in theoretical analysis. In order to propose a crimping prediction method in order to control forming quality, the theory model of crimping based on elastic-plastic mechanics is established. The main technical parameters are determined by theoretical analysis, including length of crimping, base radius of punch, terminal angle of punch, base radius of die, terminal angle of die and horizontal distance between punch and die. In addition, a method used to evaluate the forming quality is presented, which investigates the bending angle after springback, forming force, straight edge length and equivalent radius of curvature. In order to investigate the effects of technical parameters on forming quality, a two-dimensional finite element model is established by finite element software ABAQUS. The finite element model is verified in that its shapes error is less than 5% by comparable experiments, which shows that their geometric precision meets demand. The crimping characteristics is obtained, such as the distribution of stress and strain and the changes of forming force, and the relation curves of technical parameters on forming quality are given by simulation analysis. The sensitivity analysis indicates that the effects of length of crimping, technical parameters of punch on forming quality are significant. In particular, the data from simulation analysis are regressed by response surface method (RSM) to establish prediction model. The feasible technical parameters are obtained from the prediction model. This method presented provides a new thought used to design technical parameters of crimping forming and makes a basis for improving crimping forming quality.展开更多
The welding deformation is a key factor affecting the production quality of the side beam of the subway bogie frame. A major issue is how to control the welding deformation during the manufacturing processes. Based on...The welding deformation is a key factor affecting the production quality of the side beam of the subway bogie frame. A major issue is how to control the welding deformation during the manufacturing processes. Based on the "Local- Global" method, the thermal cycle and the stress of a local model extracted from the global side beam model were simulated. The simulated strain result was mapped into the global model as an initial load to simulate the welding assembly deformation. Then the deformation distribution of the side beam was obtained by elastic finite element method, and compared with the measurement results. Furthermore, the welding deformation under different welding sequences and constraints was simulated. The influence of the welding sequences and constraints on the side beam deformation was analyzed. The results indicate that the deformation is the smallest when the sequence is symmetrical and decreases with the increase in constraints.展开更多
To realize stable rotating spray transfer in the region of high constant current is the key of realizing high deposition rate MAG welding process without helium in shielding gas and extending the welding current rang...To realize stable rotating spray transfer in the region of high constant current is the key of realizing high deposition rate MAG welding process without helium in shielding gas and extending the welding current range of traditional MAG welding process. In this paper, the magnetic control mechanism of the rotating spray transfer is stated and mathematical model is given. Theoretic basis is established, which implements high deposition rate MAG welding process with magnetic control instead of helium in shielding gas.展开更多
Tendon force is an essential concept to predict welding distortion such as longitudinal shrinkage and welding induced buckling in thin plate fabrication. In this study,three approaches with experimental,theoretical an...Tendon force is an essential concept to predict welding distortion such as longitudinal shrinkage and welding induced buckling in thin plate fabrication. In this study,three approaches with experimental,theoretical and computational analysis,are examined to evaluate the magnitude of tendon force. In detail,inherent deformation theory is introduced first,the theoretical analysis to obtain the inherent strain solution is also reviewed; and then analytical solution for tendon force is achieved. Also,the theory of FE analysis for welding is introduced and implemented in a computation to obtain the transient temperature distribution,plastic strain,residual stress and welding distortion in a bead-on-plate welded joint with 2. 28 mm in thickness. The longitudinal displacement is employed to evaluate tendon force directly,and these computed inherent strain and inherent stress can also be employed to evaluate tendon force by integration approach later. All the evaluated magnitudes of tendon force have a good agreement with each other.展开更多
It is difficult to weld the material and structure of implantable neuro-stimulator such as pure medical titanium and irregular outside shield by conventional arc welding methods.Currently there are few reports on the ...It is difficult to weld the material and structure of implantable neuro-stimulator such as pure medical titanium and irregular outside shield by conventional arc welding methods.Currently there are few reports on the neuro stimulator sealing technology,and none of them have simultaneously considered the quality control methods.In order to develop the sealing procedure and quality control methods,an investigation of applying Nd:YAG laser welding to implantable neuro-stimulator components is carried out.Firstly,the automatic Nd:YAG laser welding system equipped with proper fixture configuration is introduced.A special fixture structure is illustrated and the key point for the device is to reduce the fit-up gap between the two shields.Then,a novel welding process technique is proposed to satisfy the engineering requirements.The optimized process parameters for titanium shell,feedthrough and fastener are provided and concluded by an orthogonal experiment.Finally,different quality control measures such as visual inspection,X-ray detecting and leakage testing,are presented on the final products.The results show that the Nd:YAG laser welding applied on the implanted neuro-stimulator under optimized parameters can prevent welding defects and improve the weld joints quality.Combination of various quality control methods will guarantee the sealing performance and mechanical properties of the products.It is confirmed that the processing procedure and quality methods can not only resolve the process technology on welding ultra-thin structure of medical device,but also provide the reference for other implantable device.展开更多
T-joint titanium alloy structures are commonly used in aircraft manufacturing,and their laser welding process is relatively mature,but due to the strict requirements of the airplane production,the angular deformation ...T-joint titanium alloy structures are commonly used in aircraft manufacturing,and their laser welding process is relatively mature,but due to the strict requirements of the airplane production,the angular deformation caused by uneven heat input across the sheet is still not negligible,so active control needs to be imposed.In this paper,an active deformation control method based on programmable multi-point flexible support is proposed and validated.In response to the problem that the traditional rigid clamping and pre-stressing are not adapted to the T-structure thin sheet,this study has designed a multi-point flexible support with microcontroller and electric actuators,which can monitor the stress state of the current support position in real time during the welding process and make dynamic adjustment,so that the weld deformation could be effectively reduced in this way.展开更多
The temperature rise caused by plastic deformation during the quick upsetting of tin-lead alloy and mild steel was investigated via experiments and numerical simulations aiming at a better understanding of the heat ge...The temperature rise caused by plastic deformation during the quick upsetting of tin-lead alloy and mild steel was investigated via experiments and numerical simulations aiming at a better understanding of the heat generation mechanism in friction welding. The results show that the compression amount and deformation temperature influence significantly the temperature rise during the upsetting of tin-lead alloy. The temperature rise increases with increasing the compression but decreases with increasing the deformation temperature. The simulation results are in good agreement with the experimental inspection for Sn63A alloy. The simulation results of mild steel present a similar tendency with tin-lead alloy. Moreover, the temperature rise of mild steel at elevated temperatures is comparable to that of tin-lead alloy at low temperatures.展开更多
This paper expounds the necessity of applying real-time control in vision sensing and tracking system of welding robot and analyses the difficulty of welding image processing. Through experiments, a practical robot C...This paper expounds the necessity of applying real-time control in vision sensing and tracking system of welding robot and analyses the difficulty of welding image processing. Through experiments, a practical robot CO2 arc adaptive feedback tracking system is established. According to the analysing of current and voltage signals between welding torch and base metal, the image freezing time for TMS-32020 processor is determined, and the defect of dark image and serious splashes in CO, welding image are avoided. Thus welding image becomes clear, and digitalization of video signal is stability. Then, with adaptive threshold control the welding image binaryzation, 3×3 mean level filtration and 3×3 weighting mean level filtration in welding seam are processed.Furthermore, the deviation between the centre of welding torch and the seam welded is found out, even though there are much spatter in the welding image.At last, the end effector of the robot is controlled and a welding torch is carried to track the seam welded during arc welding.展开更多
In this paper, in order to predict the residual deformation of thick spherical structure, a welding program is compiled in APDL language based on Ansys and a numerical welding experiment of a welding example is carrie...In this paper, in order to predict the residual deformation of thick spherical structure, a welding program is compiled in APDL language based on Ansys and a numerical welding experiment of a welding example is carried out. The temperature field of welding was simulated firstly, then a thermal-structure coupling analysis was carried out, and at last the residual stress and deformation after welding were got. After that, the numerical experiment result was compared with physical experiment one. The comparative analysis shows that the numerical simulation fits well with physical experiment. On the basis of that, a three-dimensional numerical experiment of a thick spherical shell structure was carried out to get the changing rule of stress and deformation of a thick spherical shell structure during welding. The research is of great value to the prediction of residual deformation and high precision machining.展开更多
Gas metal arc welding experiments were conducted on two types of steels with 0.41% carbon equivalent(Ceq) and 0.31% Cequsing WER70T wire and 20% CO_(2)and 80% Ar as shielding gas.The two types of steels show satisfact...Gas metal arc welding experiments were conducted on two types of steels with 0.41% carbon equivalent(Ceq) and 0.31% Cequsing WER70T wire and 20% CO_(2)and 80% Ar as shielding gas.The two types of steels show satisfactory weldability.The transition temperatures of 50% upper shelf energy(Tk0.5) for Charpy-V impact test of both the welded joints are below-40 ℃.However, the toughness of the fusion line zone and heat-affected zone(HAZ) of the two steel joints exhibits differences, with the toughness of 0.41% Ceqsteel being better than that of 0.31% Ceqsteel.The Tk0.5of the fusion line zone and the HAZ of 0.41% Ceqsteel is below-60℃,whereas that of 0.31% Ceqsteel is above-40℃.The welded joint of 0.41% Ceqsteel has low hardness fluctuation, while that of 0.31% Ceqsteel exhibits a narrow, softened zone, which has no obvious influence on the tested tensile strength.The coarse grain heat-affected zone(CGHAZ)microstructure of 0.41% Ceqsteel is bainite, while that of 0.31% Ceqsteel is bainite with ferrite and minor pearlite.展开更多
Modern manufacturing aims to reduce downtime and track process anomalies to make profitable business decisions.This ideology is strengthened by Industry 4.0,which aims to continuously monitor high-value manufacturing ...Modern manufacturing aims to reduce downtime and track process anomalies to make profitable business decisions.This ideology is strengthened by Industry 4.0,which aims to continuously monitor high-value manufacturing assets.This article builds upon the Industry 4.0 concept to improve the efficiency of manufacturing systems.The major contribution is a framework for continuous monitoring and feedback-based control in the friction stir welding(FSW)process.It consists of a CNC manufacturing machine,sensors,edge,cloud systems,and deep neural networks,all working cohesively in real time.The edge device,located near the FSW machine,consists of a neural network that receives sensory information and predicts weld quality in real time.It addresses time-critical manufacturing decisions.Cloud receives the sensory data if weld quality is poor,and a second neural network predicts the new set of welding parameters that are sent as feedback to the welding machine.Several experiments are conducted for training the neural networks.The framework successfully tracks process quality and improves the welding by controlling it in real time.The system enables faster monitoring and control achieved in less than 1 s.The framework is validated through several experiments.展开更多
Accelerating voltage,electron beam current,welding speed constitutes the main electron beam welding process parameters,while the penetration depth and depth-width ratio are two of the most important characteristic par...Accelerating voltage,electron beam current,welding speed constitutes the main electron beam welding process parameters,while the penetration depth and depth-width ratio are two of the most important characteristic parameters of the weld geometries.However complex interactions exists between the five variables,so the analysis of a single process parameter on one of weld geometries is affected by the other process parameters,and the impact of these interference parameters should be excluded to find the real relationship between the variables where partial correlation analysis provides such a method.Effects of the accelerating voltage,electron beam current,welding speed of electron beam welding process parameters on weld geometries is analyzed by using partial correlation analysis.The priority order of adjustment of process parameters is obtained,namely:in order to obtain a larger depth-width ratio indicators,it should be taken firstly to increase the beam current and accelerating voltage,and then to raise the welding speed;in order to obtain greater penetration depth,it is preferred to increase the beam current,followed by increasing the accelerating voltage,and reducing the welding speed finally.展开更多
A modified space beam element is presented in this paper to consider the local joint flexibility of T, Y tubular joints subjected to axial forces and in-plane bending moments for analysis of platforms. Two numerical e...A modified space beam element is presented in this paper to consider the local joint flexibility of T, Y tubular joints subjected to axial forces and in-plane bending moments for analysis of platforms. Two numerical examples are shown to verify the efficiency and validity of the method presented here.展开更多
文摘The new technology of welding with impacting rotation is put forward to decrease the wave-like deformation of the TC4 thin plate weldment. The thermal stress and strain are vital to understand the mechanism of controlling the wave-like deformation. In order to know the development of internal thermal stress and strain, finite element method is utilized for- the stress and strain are difficult to be investigated by experimental methods during the welding process. Temperature field, thermal stress evolution and distortion of thin plate are compared with the test results such as weld thermal cycle, residual stress sectioning measurement, and the deflection of the thin plate respectively. By the finite element analysis and test results verification, the meehaaism of the technology to control the wave-like deformation is brought forward, non-uniform thermal elastic strain between compressive plastic region and elastic extensive region is diminished by a certain amount of extensive plastic deformation by welding with impacting rotation process.
基金This work was supported by National Natural Science Foundation of China ( No. 50875088) Natural Science Foundation of Guangdong Province, China ( No. 07006479).
文摘In order to study how welding parameters affect welding quality and droplet transfer, a synchronous acquisition and analysis system is established to acquire and analyze electrical signal and instantaneous images of droplet transfer simultaneously, which is based on a self-developed soft-switching inverter. On the one hand, welding current and voltage signals are acquired and analyzed by a self-developed dynamic wavelet analyzer. On the other hand, images are filtered and optimized after they are captured by high-speed camera. The results show that instantaneous waveforms and statistical data of electrical signal contribute to make an overall assessment of welding quality, and that optimized high-speed images allow a visual and clear observation of droplet transfer process. The analysis of both waveforms and images leads to a further research on droplet transfer mechanism and provides a basis for precise control of droplet transfer.
文摘Using finite analysis element software, the transient displacement field of automatic submerged arc welding is established. It was also considered that the thermal physical properties changes were depended on the temperatureand the heat loss on the surface. At the same time, it analyzed the influence of the deformation and stress, whichgenerated in the plate butt-welding process, to the superstructure steel welding deformation. The result showedthat the deformation and stress generated in the steel plate butt-welding process are considered to be the mainfactors to influence the welding deformation of superstructure steel. It found the effective ways to reduce the weldingdeformation of the hull superstructure steel is to relieve the butt-welding deformation and release butt-welding stressbefore welding the hull superstructure steel.
基金National Nature Science Foundation of China (No.50575074)
文摘A controller based on a PID neural network (PIDNN) is proposed for an arc welding power source whose output characteristic in responding to a given value is quickly and intelligently controlled in the welding process. The new method syncretizes the PID control strategy and neural network to control the welding process intelligently, so it has the merit of PID control rules and the trait of better information disposal ability of the neural network. The results of simulation show that the controller has the properties of quick response, low overshoot, quick convergence and good stable accuracy, which meet the requirements for control of the welding process.
基金Acknowledgement The authors would like to thank the financial support for this research from the National Natural Science Foundation of China ( Key Program Grant No. 50936003).
文摘The controlled pulse waveform is newly applied in keyhole plasma arc welding process. Two additional descending slopes can guarantee stable and smooth transition of keyhole closing and opening periodically. To develop a closed-loop control system for this special welding process, the key point is the determination of system input and output variables. The averaged efflux plasma voltage during a pulse cycle is defined as the characteristic variable reflecting the real keyhole dimension. Research and experiments are conducted to explore the relationship between the characteristic variable and weld pe^Cormance. Results show that alternated peak current can significantly change the keyhole dimension and the penetration. It is proposed that the keyhole average dimension is taken as the controlled variable, and the peak pulse current value and slopes are taken as control variables.
文摘Mild steel plates of thicknesses 0.5 mm,0.6 mm,0.7 mm,0.8 mm,0.9 mm and 1.0 mm were prepared as test samples.After welding with the developed welding robot and manual electric arc welding machine these test samples were subjected to Tensile Strength and Hardness tests.All data obtained including hardness,load and extension were analyzed and the data produced from electric arc welding operations,the robot welding operations and un-welded plates(control)were compared with one another.The statistical analyses of hardness,load and extension tests for developed welding robot,manual electric arc welding and un-welded(control)mild steel plates of different thicknesses were carried out.The results revealed that for hardness,the developed robot welding has the highest mean value of 115.30,standard deviation value of 14.32 and variance value of 205.06.The descriptive statistics of the load showed that the developed robot welding samples collectively have the lowest mean value of 2,536.85,standard deviation value of 704.21 and variance value of 495,911.72.The descriptive statistics of the extension in which the developed robot welding samples collectively have the lowest mean value of 1.29,standard deviation value of 0.43 and variance value of 0.18 were also determined.The result for hardness showed homogeneity of variance among hardness tests of the samples,which implies variation in the hardness test among the tests of the samples since p-value is 0.038.While the result for loads shows homogeneity of variance among loads of the samples in which the result reveals that there is no variation in the loads among the tests of the samples since p-value is 0.322.The result for extension shows homogeneity of variance among extensions of the samples in which it revealed that there is variation in the extensions among the tests of the samples since p-value is 0.011.The analysis of variance(ANOVA)test result revealed that there is a significant difference in the hardness of the samples in which developed robot welding operation gave the highest hardness compared with electric arc welding and un-welded(CONTROL)since p-value is 0.028.The ANOVA test result for load revealed that there is no significant difference in the loads of the samples since p-value is 0.51.The ANOVA test result of the extension shows that there is a significant difference in the extension of the samples in which developed robot welding operation gave the lowest extension compared with electric arc welding and un-welded(CONTROL)since p-value is 0.001.The results of hardness also showed the mean difference of 16.48 between developed robot welding and un-welded(CONTROL)samples and 7.26 between developed robot welding and electric arc welding samples.Finally,for extension the mean difference of-5.28 between developed robot welding and un-welded(CONTROL)samples and-1.22 between developed robot welding and electric arc welding samples were established.
基金supported by Hebei Excellent Youth Fund of Science and Technology Research for Colleges and Universities of China(Grant NoY2012035)
文摘Crimping is used in production of large diameter submerged-arc welding pipes. Many researches are focused on crimping in certain manufacturing mode of welding pipe. The application scopes of research achievements become limited due to lack of uniformity in theoretical analysis. In order to propose a crimping prediction method in order to control forming quality, the theory model of crimping based on elastic-plastic mechanics is established. The main technical parameters are determined by theoretical analysis, including length of crimping, base radius of punch, terminal angle of punch, base radius of die, terminal angle of die and horizontal distance between punch and die. In addition, a method used to evaluate the forming quality is presented, which investigates the bending angle after springback, forming force, straight edge length and equivalent radius of curvature. In order to investigate the effects of technical parameters on forming quality, a two-dimensional finite element model is established by finite element software ABAQUS. The finite element model is verified in that its shapes error is less than 5% by comparable experiments, which shows that their geometric precision meets demand. The crimping characteristics is obtained, such as the distribution of stress and strain and the changes of forming force, and the relation curves of technical parameters on forming quality are given by simulation analysis. The sensitivity analysis indicates that the effects of length of crimping, technical parameters of punch on forming quality are significant. In particular, the data from simulation analysis are regressed by response surface method (RSM) to establish prediction model. The feasible technical parameters are obtained from the prediction model. This method presented provides a new thought used to design technical parameters of crimping forming and makes a basis for improving crimping forming quality.
文摘The welding deformation is a key factor affecting the production quality of the side beam of the subway bogie frame. A major issue is how to control the welding deformation during the manufacturing processes. Based on the "Local- Global" method, the thermal cycle and the stress of a local model extracted from the global side beam model were simulated. The simulated strain result was mapped into the global model as an initial load to simulate the welding assembly deformation. Then the deformation distribution of the side beam was obtained by elastic finite element method, and compared with the measurement results. Furthermore, the welding deformation under different welding sequences and constraints was simulated. The influence of the welding sequences and constraints on the side beam deformation was analyzed. The results indicate that the deformation is the smallest when the sequence is symmetrical and decreases with the increase in constraints.
文摘To realize stable rotating spray transfer in the region of high constant current is the key of realizing high deposition rate MAG welding process without helium in shielding gas and extending the welding current range of traditional MAG welding process. In this paper, the magnetic control mechanism of the rotating spray transfer is stated and mathematical model is given. Theoretic basis is established, which implements high deposition rate MAG welding process with magnetic control instead of helium in shielding gas.
基金supported by the National Natural Science Foundation of China(Grant No.51609091)the Fundamental Research Funds for the Central Universities(Grant No.2015MS102)
文摘Tendon force is an essential concept to predict welding distortion such as longitudinal shrinkage and welding induced buckling in thin plate fabrication. In this study,three approaches with experimental,theoretical and computational analysis,are examined to evaluate the magnitude of tendon force. In detail,inherent deformation theory is introduced first,the theoretical analysis to obtain the inherent strain solution is also reviewed; and then analytical solution for tendon force is achieved. Also,the theory of FE analysis for welding is introduced and implemented in a computation to obtain the transient temperature distribution,plastic strain,residual stress and welding distortion in a bead-on-plate welded joint with 2. 28 mm in thickness. The longitudinal displacement is employed to evaluate tendon force directly,and these computed inherent strain and inherent stress can also be employed to evaluate tendon force by integration approach later. All the evaluated magnitudes of tendon force have a good agreement with each other.
基金supported by National Key Technology R&D Program during the 11th Five-Year Plan Period (Grant No. 2006BAI03A18)
文摘It is difficult to weld the material and structure of implantable neuro-stimulator such as pure medical titanium and irregular outside shield by conventional arc welding methods.Currently there are few reports on the neuro stimulator sealing technology,and none of them have simultaneously considered the quality control methods.In order to develop the sealing procedure and quality control methods,an investigation of applying Nd:YAG laser welding to implantable neuro-stimulator components is carried out.Firstly,the automatic Nd:YAG laser welding system equipped with proper fixture configuration is introduced.A special fixture structure is illustrated and the key point for the device is to reduce the fit-up gap between the two shields.Then,a novel welding process technique is proposed to satisfy the engineering requirements.The optimized process parameters for titanium shell,feedthrough and fastener are provided and concluded by an orthogonal experiment.Finally,different quality control measures such as visual inspection,X-ray detecting and leakage testing,are presented on the final products.The results show that the Nd:YAG laser welding applied on the implanted neuro-stimulator under optimized parameters can prevent welding defects and improve the weld joints quality.Combination of various quality control methods will guarantee the sealing performance and mechanical properties of the products.It is confirmed that the processing procedure and quality methods can not only resolve the process technology on welding ultra-thin structure of medical device,but also provide the reference for other implantable device.
基金supported by the National Natural Science Foundation of China(Grant No.52275304 and 51975014).
文摘T-joint titanium alloy structures are commonly used in aircraft manufacturing,and their laser welding process is relatively mature,but due to the strict requirements of the airplane production,the angular deformation caused by uneven heat input across the sheet is still not negligible,so active control needs to be imposed.In this paper,an active deformation control method based on programmable multi-point flexible support is proposed and validated.In response to the problem that the traditional rigid clamping and pre-stressing are not adapted to the T-structure thin sheet,this study has designed a multi-point flexible support with microcontroller and electric actuators,which can monitor the stress state of the current support position in real time during the welding process and make dynamic adjustment,so that the weld deformation could be effectively reduced in this way.
文摘The temperature rise caused by plastic deformation during the quick upsetting of tin-lead alloy and mild steel was investigated via experiments and numerical simulations aiming at a better understanding of the heat generation mechanism in friction welding. The results show that the compression amount and deformation temperature influence significantly the temperature rise during the upsetting of tin-lead alloy. The temperature rise increases with increasing the compression but decreases with increasing the deformation temperature. The simulation results are in good agreement with the experimental inspection for Sn63A alloy. The simulation results of mild steel present a similar tendency with tin-lead alloy. Moreover, the temperature rise of mild steel at elevated temperatures is comparable to that of tin-lead alloy at low temperatures.
文摘This paper expounds the necessity of applying real-time control in vision sensing and tracking system of welding robot and analyses the difficulty of welding image processing. Through experiments, a practical robot CO2 arc adaptive feedback tracking system is established. According to the analysing of current and voltage signals between welding torch and base metal, the image freezing time for TMS-32020 processor is determined, and the defect of dark image and serious splashes in CO, welding image are avoided. Thus welding image becomes clear, and digitalization of video signal is stability. Then, with adaptive threshold control the welding image binaryzation, 3×3 mean level filtration and 3×3 weighting mean level filtration in welding seam are processed.Furthermore, the deviation between the centre of welding torch and the seam welded is found out, even though there are much spatter in the welding image.At last, the end effector of the robot is controlled and a welding torch is carried to track the seam welded during arc welding.
文摘In this paper, in order to predict the residual deformation of thick spherical structure, a welding program is compiled in APDL language based on Ansys and a numerical welding experiment of a welding example is carried out. The temperature field of welding was simulated firstly, then a thermal-structure coupling analysis was carried out, and at last the residual stress and deformation after welding were got. After that, the numerical experiment result was compared with physical experiment one. The comparative analysis shows that the numerical simulation fits well with physical experiment. On the basis of that, a three-dimensional numerical experiment of a thick spherical shell structure was carried out to get the changing rule of stress and deformation of a thick spherical shell structure during welding. The research is of great value to the prediction of residual deformation and high precision machining.
文摘Gas metal arc welding experiments were conducted on two types of steels with 0.41% carbon equivalent(Ceq) and 0.31% Cequsing WER70T wire and 20% CO_(2)and 80% Ar as shielding gas.The two types of steels show satisfactory weldability.The transition temperatures of 50% upper shelf energy(Tk0.5) for Charpy-V impact test of both the welded joints are below-40 ℃.However, the toughness of the fusion line zone and heat-affected zone(HAZ) of the two steel joints exhibits differences, with the toughness of 0.41% Ceqsteel being better than that of 0.31% Ceqsteel.The Tk0.5of the fusion line zone and the HAZ of 0.41% Ceqsteel is below-60℃,whereas that of 0.31% Ceqsteel is above-40℃.The welded joint of 0.41% Ceqsteel has low hardness fluctuation, while that of 0.31% Ceqsteel exhibits a narrow, softened zone, which has no obvious influence on the tested tensile strength.The coarse grain heat-affected zone(CGHAZ)microstructure of 0.41% Ceqsteel is bainite, while that of 0.31% Ceqsteel is bainite with ferrite and minor pearlite.
文摘Modern manufacturing aims to reduce downtime and track process anomalies to make profitable business decisions.This ideology is strengthened by Industry 4.0,which aims to continuously monitor high-value manufacturing assets.This article builds upon the Industry 4.0 concept to improve the efficiency of manufacturing systems.The major contribution is a framework for continuous monitoring and feedback-based control in the friction stir welding(FSW)process.It consists of a CNC manufacturing machine,sensors,edge,cloud systems,and deep neural networks,all working cohesively in real time.The edge device,located near the FSW machine,consists of a neural network that receives sensory information and predicts weld quality in real time.It addresses time-critical manufacturing decisions.Cloud receives the sensory data if weld quality is poor,and a second neural network predicts the new set of welding parameters that are sent as feedback to the welding machine.Several experiments are conducted for training the neural networks.The framework successfully tracks process quality and improves the welding by controlling it in real time.The system enables faster monitoring and control achieved in less than 1 s.The framework is validated through several experiments.
文摘Accelerating voltage,electron beam current,welding speed constitutes the main electron beam welding process parameters,while the penetration depth and depth-width ratio are two of the most important characteristic parameters of the weld geometries.However complex interactions exists between the five variables,so the analysis of a single process parameter on one of weld geometries is affected by the other process parameters,and the impact of these interference parameters should be excluded to find the real relationship between the variables where partial correlation analysis provides such a method.Effects of the accelerating voltage,electron beam current,welding speed of electron beam welding process parameters on weld geometries is analyzed by using partial correlation analysis.The priority order of adjustment of process parameters is obtained,namely:in order to obtain a larger depth-width ratio indicators,it should be taken firstly to increase the beam current and accelerating voltage,and then to raise the welding speed;in order to obtain greater penetration depth,it is preferred to increase the beam current,followed by increasing the accelerating voltage,and reducing the welding speed finally.
文摘A modified space beam element is presented in this paper to consider the local joint flexibility of T, Y tubular joints subjected to axial forces and in-plane bending moments for analysis of platforms. Two numerical examples are shown to verify the efficiency and validity of the method presented here.