期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Research and application of water jet technology in well completion and stimulation in China 被引量:9
1
作者 Li Gensheng Huang Zhongwei Tian Shouceng Shen Zhonghou 《Petroleum Science》 SCIE CAS CSCD 2010年第2期239-244,共6页
In recent years, rapid progress in the use of high pressure water jets (HPWJ) has been made in oil and gas well drilling, completion, and stimulation; and good results have been achieved in field applications. Advan... In recent years, rapid progress in the use of high pressure water jets (HPWJ) has been made in oil and gas well drilling, completion, and stimulation; and good results have been achieved in field applications. Advances in technologies and developments of well completion and stimulation with hydrajet are reviewed in this paper. Experiments were conducted to study the characteristics of abrasive water jetting and to optimize jet parameters, which can provide methods for the well completion and hydrajet fracturing. Deep-penetrating hydrajet perforating can create a 2-3 m clean hole with a diameter of 20-35 mm. Multilayer hydrajet fracturing is a process whereby multiple layers are stimulated in a single run without using mechanical packers, thereby reducing operation procedure and risk. Multilateral radial wells can be drilled using hydraulic jetting up to 100 m in length. The technique to remove sand particles and plugs with rotating self-resonating cavitating water jets in horizontal wellbores has been developed and oilfield-tested, which shows promising, cost effective prospects. 展开更多
关键词 Water jet abrasive jet well completion PERFORATION STIMULATION horizontal drilling with hydrajet
下载PDF
Finite Element Method Simulation of Wellbore Stability under Different Operating and Geomechanical Conditions
2
作者 Junyan Liu Ju Liu +3 位作者 Yan Wang Shuang Liu Qiao Wang Yihe Du 《Fluid Dynamics & Materials Processing》 EI 2024年第1期205-218,共14页
The variation of the principal stress of formations with the working and geo-mechanical conditions can trigger wellbore instabilities and adversely affect the well completion.A finite element model,based on the theory... The variation of the principal stress of formations with the working and geo-mechanical conditions can trigger wellbore instabilities and adversely affect the well completion.A finite element model,based on the theory of poro-elasticity and the Mohr-Coulomb rock damage criterion,is used here to analyze such a risk.The changes in wellbore stability before and after reservoir acidification are simulated for different pressure differences.The results indicate that the risk of wellbore instability grows with an increase in the production-pressure difference regardless of whether acidification is completed or not;the same is true for the instability area.After acidizing,the changes in the main geomechanical parameters(i.e.,elastic modulus,Poisson’s ratio,and rock strength)cause the maximum wellbore instability coefficient to increase. 展开更多
关键词 wellbore stability finite element acidizing operation well completion
下载PDF
Determination of the Cement Sheath Interface and the Causes of Failure in the Completion Stage of Gas Wells
3
作者 Xuesong Xing Renjun Xie +2 位作者 Yi Wu Zhiqiang Wu Huanqiang Yang 《Fluid Dynamics & Materials Processing》 EI 2022年第6期1719-1735,共17页
The bonding quality of the cement sheath interface decreases during well completion because of the change in the casing pressure.To explore the root cause of such phenomena,experiments on the mechanical properties and... The bonding quality of the cement sheath interface decreases during well completion because of the change in the casing pressure.To explore the root cause of such phenomena,experiments on the mechanical properties and interface bonding strength of a cement sheath have been carried out taking the LS25-1 high-temperature and high-pressure(HTHP)gas field as an example.Moreover,a constitutive model of the cement sheath has been defined and verified both by means of a full-scale HTHP cement sheath sealing integrity evaluation experiment and three-dimensional finite element simulations.The results show that the low initial cementing surface strength is the root cause of cement sheath interface bonding failure.When the pressure in the casing exceeds a certain limit,the stress caused by the change in the internal pressure in the casing is transmitted to the cement sheath,resulting in the degradation of the interface stiffness of the cement sheath.However,with an increase in the casing wall thickness,the stress transmission capacity decreases.Therefore,it is concluded that improving the interfacial cementing strength,appropriately increasing the casing wall thickness and increasing the initial stress of the cement sheath are the keys to ensuring the sealing integrity of the cement sheath in high-temperature and high-pressure gas wells. 展开更多
关键词 Gas well completion cement sheath sealing failure interfacial bonding strength damage plasticity model
下载PDF
Optimization of perforation distribution for horizontal wells based on genetic algorithms 被引量:3
4
作者 Wang Zhiming Wei Jianguang +2 位作者 Zhang Jian Gong Bin Yan Haiyun 《Petroleum Science》 SCIE CAS CSCD 2010年第2期232-238,共7页
Early water breakthrough and a rapid increase in water cut are always observed in high- permeability completion intervals when perforations are uniformly distributed in the wellbore in heterogeneous reservoirs. Optimi... Early water breakthrough and a rapid increase in water cut are always observed in high- permeability completion intervals when perforations are uniformly distributed in the wellbore in heterogeneous reservoirs. Optimization of perforating parameters in partitioned sections in horizontal intervals helps homogenize the inflow from the reservoir and thus is critically important for enhanced oil recovery. This paper derives a coupled reservoir-wellbore flow model based on inflow controlling theory. Genetic algorithms are applied to solving the model as they excel in obtaining the global optimum of discrete functions. The optimized perforating strategy applies a low perforation density in high- permeability intervals and a high perforation density in low-permeability intervals. As a result, the inflow profile is homogenized and idealized. 展开更多
关键词 well completion perforation optimization genetic algorithms PARTITION horizontal well
下载PDF
Thermal stresses analysis of casing string used in enhanced geothermal systems wells 被引量:1
5
作者 ZHANG Pei-feng 《Journal of Groundwater Science and Engineering》 2016年第4期293-300,共8页
In the enhanced geothermal systems wells, casing temperature variation produces casing thermal stresses, resulting in casing uplift or bucking. When the induced thermal stresses exceed casing material's yield stre... In the enhanced geothermal systems wells, casing temperature variation produces casing thermal stresses, resulting in casing uplift or bucking. When the induced thermal stresses exceed casing material's yield strength, the casing deforms and collapses. The traditional casing design standard only considers the influence of temperature variation on casing material's yield strength. Actually, for commonly used grades of steel pipe, casing's material properties-such as yield strength, coefficient of thermal expansion, and modulus of elasticity change with temperature variation. In this paper, the modified thermal stress equation is given. Examples show that the allowable temperature of the material grade N80's casing is only 164 ℃, which is much lower than that of the traditional design standard. The effective method to improve the casing pipe's allowable temperature is pre-stressed cementing technology. Pre-stressed cementing includes pre-tension stress cementing and pre-pressure stress cementing. This paper focuses on the design method of full casing pre-tension stress cementing and the ground anchor full casing string pre-tension cementing construction process. 展开更多
关键词 Casing thermal stress EGS wells Casing deformation and collapse Pre-tension stress cementing well completion design Pre-stressed cementing
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部