The variation of the principal stress of formations with the working and geo-mechanical conditions can trigger wellbore instabilities and adversely affect the well completion.A finite element model,based on the theory...The variation of the principal stress of formations with the working and geo-mechanical conditions can trigger wellbore instabilities and adversely affect the well completion.A finite element model,based on the theory of poro-elasticity and the Mohr-Coulomb rock damage criterion,is used here to analyze such a risk.The changes in wellbore stability before and after reservoir acidification are simulated for different pressure differences.The results indicate that the risk of wellbore instability grows with an increase in the production-pressure difference regardless of whether acidification is completed or not;the same is true for the instability area.After acidizing,the changes in the main geomechanical parameters(i.e.,elastic modulus,Poisson’s ratio,and rock strength)cause the maximum wellbore instability coefficient to increase.展开更多
Wellbore stability is essential for safe and efficient drilling during oil and gas exploration and development.This paper introduces a hydrophobic nano-silica(HNS)for use in strengthening the wellbore wall when using ...Wellbore stability is essential for safe and efficient drilling during oil and gas exploration and development.This paper introduces a hydrophobic nano-silica(HNS)for use in strengthening the wellbore wall when using a water-based drilling fluid(WBF).The wellbore-strengthening performance was studied using the linear swelling test,hot-rolling recovery test,and compressive strength test.The mechanism of strengthening the wellbore wall was studied by means of experiments on the zeta potential,particle size,contact angle,and surface tension,and with the use of a scanning electron microscope(SEM).The surface free energy changes of the shale before and after HNS treatment were also calculated using the contact angle method.The experimental results showed that HNS exhibited a good performance in inhibiting shale swelling and dispersion.Compared with the use of water,the use of HNS resulted in a 20%smaller linear swelling height of the bentonite pellets and an 11.53 times higher recovery of water-sensitive shale—a performance that exceeds those of the commonly used shale inhibitors KCl and polyamines.More importantly,the addition of HNS was effective in preventing a decrease in shale strength.According to the mechanism study,the good wellbore-strengthening performance of HNS can be attributed to three aspects.First,the positively charged HNS balances parts of the negative charges of clay by means of electrostatic adsorption,thus inhibiting osmotic hydration.Second,HNS fabricates a lotus-leaf-like surface with a micro-nano hierarchical structure on shale after adsorption,which significantly increases the water contact angle of the shale surface and considerably reduces the surface free energy,thereby inhibiting surface hydration.Third,the decrease in capillary action and the effective plugging of the shale pores reduce the invasion of water and promote wellbore stability.The approach described herein may provide an avenue for inhibiting both the surface hydration and the osmotic hydration of shale.展开更多
Natural gas hydrate(NGH)reservoirs consist of the types of sediments with weak cementation,low strength,high plasticity,and high creep.Based on the kinetics and thermodynamic characteristics of NGH decomposition,herei...Natural gas hydrate(NGH)reservoirs consist of the types of sediments with weak cementation,low strength,high plasticity,and high creep.Based on the kinetics and thermodynamic characteristics of NGH decomposition,herein a heat-fluid-solid coupling model was established for studying the wellbore stability in an NGH-bearing formation to analyze the effects of the creep characteristics of NGH-bearing sediments during long-term drilling.The results demonstrated that the creep characteristics of sediments resulted in larger plastic yield range,thus aggravating the plastic strain accumulation around the wellbore.Furthermore,the creep characteristics of NGH-bearing sediments could enhance the effects induced by the difference in horizontal in situ stress,as a result,the plastic strain in the formation around the wellbore increased nonlinearly with increasing difference in in situ stress.The lower the pore pressure,the greater the stress concentration effects and the higher the plastic strain at the wellbore.Moreover,the lower the initial NGH saturation,the greater the initial plastic strain and yield range and the higher the equivalent creep stress.The plastic strain at the wellbore increased nonlinearly with decreasing initial saturation.展开更多
As the oil or gas exploration and development activities in deep and ultra- deep waters become more and more, encountering gas hydrate bearing sediments (HBS) is almost inevitable. The variation in temperature and p...As the oil or gas exploration and development activities in deep and ultra- deep waters become more and more, encountering gas hydrate bearing sediments (HBS) is almost inevitable. The variation in temperature and pressure can destabilize gas hydrate in nearby formation around the borehole, which may reduce the strength of the formation and result in wellbore instability. A non-isothermal, transient, two-phase, and fluid-solid coupling mathematical model is proposed to simulate the complex stability performance of a wellbore drilled in HBS. In the model, the phase transition of hydrate dissociation, the heat exchange between drilling fluid and formation, the change of mechanical and petrophysical properties, the gas-water two-phase seepage, and its interaction with rock deformation are considered. A finite element simulator is developed, and the impact of drilling mud on wellbore instability in HBS is simulated. Results indicate that the re- duction in pressure and the increase in temperature of the drilling fluid can accelerate hydrate decomposition and lead to mechanical properties getting worse tremendously. The cohesion decreases by 25% when the hydrate totally dissociates in HBS. This easily causes the wellbore instability accordingly. In the first two hours after the formation is drilled, the regions of hydrate dissociation and wellbore instability extend quickly. Then, with the soaking time of drilling fluid increasing, the regions enlarge little. Choosing the low temperature drilling fluid and increasing the drilling mud pressure appropriately can benefit the wellbore stability of HBS. The established model turns out to be an efficient tool in numerical studies of the hydrate dissociation behavior and wellbore stability of HBS.展开更多
Wellbore stability analysis is a growing concern in oil industries. There are many parameters affecting the stability of a wellbore including geomechanical properties (e.g., elastic modulus, uni-axial compressive stre...Wellbore stability analysis is a growing concern in oil industries. There are many parameters affecting the stability of a wellbore including geomechanical properties (e.g., elastic modulus, uni-axial compressive strength (UCS) and cohesion) and acting forces (e.g., field stresses and mud pressure). Accurate determination of these parameters is time-consuming, expensive and sometimes even impossible. This work offers a systematic sensitivity analysis to quantify the amount of each parameter’s effect on the stability of a wellbore. Maximum wellbore wall displacement is used as a stability factor to study the stability of a wellbore. A 3D finite difference method with Mohr model is used for the numerical modeling. The numerical model is verified against an analytical solution. A dimensionless sensitivity factor is developed in order to compare the results of various parameters in the sensitivity analysis. The results show a different order of importance of parameters based on rock strength. The most sensitive properties for a weak rock are the maximum horizontal stress, internal friction angle and formation pressure, respectively, while for a strong rock, the most sensitive parameters are the maximum horizontal stress, mud pressure and pore pressure, respectively. The amount of error in wellbore stability analysis inflicted by the error in estimation of each parameter was also derived.展开更多
Wellbore collapse frequently happens in the clay shale formation.To maintain wellbore stability,appropriate mud pressure is a vital factor.When clay formation is opened,drilling unloading occurs,modifying rock structu...Wellbore collapse frequently happens in the clay shale formation.To maintain wellbore stability,appropriate mud pressure is a vital factor.When clay formation is opened,drilling unloading occurs,modifying rock structure and strength at the wall of borehole,which affects the selection of mud pressure.Currently,mechanism of drilling unloading is still poorly understood which in return will bring a concern to wellbore stability.Therefore,in this study,a combination of triaxial compressive test and ultrasonic wave test has been used to simulate drilling unloading and analyze its mechanism.Results indicate that more void space is created inside the clay shale sample due to unloading.This structure change leads to a decline of strength and acoustic amplitude.Additionally,unloading influence is depended on varying drilling unloading parameters.Small unloading range and fast unloading rate are able to enhance stability.With various degrees of unloading impact,collapse pressure equivalent density has a clear modification,proving that unloading is a non-negligible influencing factor of wellbore stability.Besides,the unloading effect is much stronger in large confining pressure,implying that more attention should be given to unloading when drilling is in extreme deep or high geostress formation.Findings in this paper can offer theoretical guidance for drilling in the clay shale formation.展开更多
Wellbore instability is a key problem restricting efficient production of coal-bed methane. In order to perform thorough and systematic research regarding coal-bed wellbore stability problems, a new discrete element m...Wellbore instability is a key problem restricting efficient production of coal-bed methane. In order to perform thorough and systematic research regarding coal-bed wellbore stability problems, a new discrete element model which fully considers the features of cleat coal-beds is established based on the Kirsch equation. With this model, the safe pipe tripping speed, drilling fluid density window and coal- bed collapse/fracture pressure are determined; in addition, the relationships between pipe tripping speed and pipe size, cleat size, etc. and wellbore stability are analyzed in the coal-bed drilling and pipe tripping processes. The case studies show the following results: the wellbore collapses (collapse pressure: 4.33 MPa) or fractures (fracture pressure: 12.7 MPa) in certain directions as a result of swab or surge pressure when the pipe tripping speed is higher than a certain value; the cleat face size has a great influence on wellbore stability, and if the drilling fluid pressure is too low, the wellbore is prone to collapse when the ratio of the face cleat size to butt cleat size is reduced; however, if the drilling fluid pressure is high enough, the butt cleat size has no influence on the wellbore fracture; the factors influencing coal-bed stability include the movement length, pipe size, borehole size.展开更多
In order to overcome serious instability prob- lems in hydratable shale formations, a novel electropositive wellbore stabilizer (EPWS) was prepared by a new approach. It has good colloidal stability, particle size d...In order to overcome serious instability prob- lems in hydratable shale formations, a novel electropositive wellbore stabilizer (EPWS) was prepared by a new approach. It has good colloidal stability, particle size dis- tribution, compatibility, sealing property, and flexible adaptability. A variety of methods including measurements of particle size, Zeta potential, colloidal stability, contact angle, shale stability index, shale dispersion, shale swelling, and plugging experiments were adopted to characterize the EPWS and evaluate its anti-sloughing capacity and flexible adaptability. Results show that the EPWS has advantages over the conventional wellbore stabilizer (ZX-3) in particle size distribution, colloidal stability, inhibition, compatibil- ity, and flexible adaptability. The EPWS with an average particle size of 507 nm and an average Zeta potential of 54 mV could be stable for 147 days and be compatible with salt tolerant or positive charged additives, and it also exhibited preferable anti-sloughing performance to hydrat- able shales at 77, 100, and 120 ~C, and better compatibility with sodium bentonite than ZX-3 and KC1. The EPWS can plug micro-fractures and pores by forming a tight external mud cake and an internal sealing belt to retard pressure transmission and prevent filtrate invasion, enhancing hydrophobicity of shale surfaces by adsorption to inhibithydration. The EPWS with flexible adaptability to tem- perature for inhibition and sealing capacity is available for long open-hole sections during drilling.展开更多
According to the transversely isotropic theory and weak plane criterion, and considering the mechanical damages due to stress unloading and hydration during drilling, a shale wellbore stability model with the influenc...According to the transversely isotropic theory and weak plane criterion, and considering the mechanical damages due to stress unloading and hydration during drilling, a shale wellbore stability model with the influence of stress unloading and hydration was established using triaxial test and shear test. Then, factors influencing the wellbore stability in shale were analyzed. The results indicate that stress unloading occurs during drilling in shale. The larger the confining pressure and axial stress, the more remarkable weakening of shale strength caused by stress unloading. The stress unloading range is positively correlated with the weakening degree of shale strength. Shale with a higher development degree of bedding is more prone to damage along bedding. In this case, during stress unloading, the synergistic effect of weak structural plane and stress unloading happens, leading to a higher weakening degree of shale strength and poorer mechanical stability, which brings a higher risk of wellbore instability. Fluid tends to invade shale through bedding, promoting the shale hydration. Hydration also can weaken shale mechanical stability, causing the decline of wellbore stability. Influence of stress unloading on collapse pressure of shale mainly occurs at the early stage of drilling, while the influence of hydration on wellbore stability mainly happens at the late stage of drilling. Bedding, stress unloading and hydration jointly affect the wellbore stability in shale. The presented shale wellbore stability model with the influence of stress unloading and hydration considers the influences of the three factors. Field application demonstrates that the prediction results of the model agree with the actual drilling results, verifying the reliability of the model.展开更多
Through embedding modified nano-silica particles on the surface of polystyrene using the method of Pickering emulsion polymerization,a kind of nano/micro oleophobic agent named OL-1 was developed.The effects of OL-1 o...Through embedding modified nano-silica particles on the surface of polystyrene using the method of Pickering emulsion polymerization,a kind of nano/micro oleophobic agent named OL-1 was developed.The effects of OL-1 on the rock surface properties and its performance in inhibiting the oil phase imbibition into the rock were explored.The performance and mechanisms of OL-1 in improving the wellbore stability of shale gas wells were evaluated and analyzed.OL-1 could absorb on the surface of the shale core to form a membrane with a micro-nano two-stage roughness,making the surface energy of the core decrease to 0.13 mN/m and the contact angle of the white oil on the core surface increase from 16.39°to 153.03°.Compared with the untreated capillary tube,when immersed into 3#white oil,the capillary tube treated by OL-1 had a reversal of capillary pressure from 273.76 Pa to-297.71 Pa,and the oil imbibition height inside the capillary tube decreased from 31 mm above the external liquid level to 33 mm below the external liquid level.The amount of oil invading into the rock core modified by OL-1 decreased by 64.29%compared with the untreated one.The shale core immersed into the oil-based drilling fluids with 1%OL-1 had a porosity reduction rate of only 4.5%.Compared with the core immersed in the drilling fluids without OL-1,the inherent force of the core treated by 1%OL-1 increased by 24.9%,demonstrating that OL-1 could effectively improve the rock mechanical stability by inhibiting oil phase imbibition.展开更多
We report a phase inversion polymer coating as a novel concept with potential to prevent clay swelling and fines generation in coal seam gas, or other petroleum, wellbores. Our approach uses polyethersulfone (PES) w...We report a phase inversion polymer coating as a novel concept with potential to prevent clay swelling and fines generation in coal seam gas, or other petroleum, wellbores. Our approach uses polyethersulfone (PES) with N-methyl-2- pyrrolidone (NMP) as a water-soluble solvent to form a dense, low-porosity film across the clay-rich interburden layers, but a porous and permeable membrane on coal seams. This contrasting behaviour occurs because the coal contains much more free water than the clay-rich interburden layers. We demonstrate the efficacy of the method to prevent clay spalling in immersion tests and under a flow of fresh water in a visual swell test apparatus. The clay-rich rocks studied were mudstone and siltstone, and these were dip coated in the PES/NMP solution. The uncoated mudstone swelled and broke apart quickly in the immersion test and visual flow test, but the PES coated rock samples were stable for 30 days. The coated rock and coal samples were characterised by X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy. The morphology of coated mudstone and coated coal samples showed that the polymer formed a dense layer across the low-permeability mudstone, but an open porous structure on the coal surface. The effect of the coating on the permeability of KCl brine through coal was measured in a core-flood apparatus. Although the permeability of the coal showed some deterioration after coating, from (0.58 ± 0.12) mD to (0.3 ±0.03) mD, these results demonstrate the potential of a smart polymer coating to prevent clay swelling while remaining permeable to gas and water on coal layers.展开更多
Considering the increasing environmental pressure,environmentally friendly and high-performance water-based drilling fluids(WBDFs)have been widely studied in recent years to replace the commonly used oil-based drillin...Considering the increasing environmental pressure,environmentally friendly and high-performance water-based drilling fluids(WBDFs)have been widely studied in recent years to replace the commonly used oil-based drilling fluids(OBDFs).However,few of these drilling fluids are entirely composed of natural materials,which makes it difficult to achieve real environmental protection.Using laponite nanoparticles and various derivatives of natu ral mate rials,including cro sslinked starch,cellulose composite,gelatin ammonium salt,poly-l-arginine,and polyanionic cellulose,a kind of environmentally friendly water-based drilling fluid(EF-WBDF)was built for drilling in environment-sensitive areas.The properties of this EF-WBDF were evaluated by thermal stability tests on rheology,filtration,inhibition,and salt contamination.Besides,biological toxicity,biodegradability,heavy mental content and wheat cultivation tests were conducted to investigate the environmental factor of EF-WBDF.Results showed that EF-WBDF displayed satisfactory thermal resistance up to 150℃,and the rheological properties did not suffer significant fluctuation,showing potential application in high-temperature wells.The optimal rheological model of EF-WBDF was Herschel-Bulkley model.This EF-WBDF performed an eligible filtration of 14.2 mL at 150℃and a differential pressure of 3.5 MPa.This fluid could still maintain colloidal stability after being contaminated by 7.5%NaCl or 0.5%CaC1_(2).Meanwhile,rather low clay swelling degree of 2.44 mm and high shale recovery of more than 95%ensured the inhibitive capability of EF-WBDF.Furthermore,EF-WBDF presented a half maximal effective concentration(EC_(50))of51200 mg/L and a BOD/COD ratio of 47.55%,suggesting that EF-WBDF was non-toxic and easily biodegradable.The wheat cultivated in EF-WBDF could grow healthily,beneficial for reducing the adverse impact on ecological environment.The formed EF-WBDF has a promising future for drilling in environment-sensitive and high-temperature areas.展开更多
Wellbore instability,especially drilling with water-based drilling fluids(WBDFs)in complex shale for-mations,is a critical challenge for oil and gas development.The purpose of this paper is to study the feasibility of...Wellbore instability,especially drilling with water-based drilling fluids(WBDFs)in complex shale for-mations,is a critical challenge for oil and gas development.The purpose of this paper is to study the feasibility of using hydrophobically modified silica nanoparticle(HMN)to enhance the comprehensive performance of WBDFs in the Xinjiang Oilfield,especially the anti-collapse performance.The effect of HMN on the overall performance of WBDFs in the Xinjiang Oilfield,including inhibition,plugging,lu-bricity,rheology,and filtration loss,was studied with a series of experiments.The mechanism of HMN action was studied by analyzing the changes of shale surface structure and chemical groups,wettability,and capillary force.The experimental results showed that HMN could improve the performance of WBDFs in the Xinjiang Oilfeld to inhibit the hydration swelling and dispersion of shale.The plugging and lubrication performance of the WBDFs in the Xinjiang Oilfield were also enhanced with HMN based on the experimental results.HMN had less impact on the rheological and filtration performance of the WBDFs in the Xinjiang Oilfield.In addition,HMN significantly prevented the decrease of shale strength.The potential mechanism of HMN was as follows.The chemical composition and structure of the shale surface were altered due to the adsorption of HMN driven by electrostatic attraction.Changes of the shale surface resulted in significant wettability transition.The capillary force of the shale was converted from a driving force of water into the interior to a resistance.In summary,hydrophobic nanoparticles presented afavorable application potential for WBDFs.展开更多
Graphene oxide (GO) nano-sheets were synthesized using a modified Hummers' method from graphite powder. The Raman spectrum of GO displayed a D-band at 1359 cm-1 and a G-band at 1594 cm-l. The ID/IG value of GO was ...Graphene oxide (GO) nano-sheets were synthesized using a modified Hummers' method from graphite powder. The Raman spectrum of GO displayed a D-band at 1359 cm-1 and a G-band at 1594 cm-l. The ID/IG value of GO was calculated to be 0.97, suggesting the formation of new sp2 clusters upon reduction. A method was designed to investigate the assembly of the GO/montmorillonite (MMT) composite. After the addition of GO, the typical peaks of montmorillonite in FT-IR spectra shifted, indicating the assembly between GO and MMT. The D-band and G-band reduced sharply in the GO/MMT composite. More importantly, the D-band (1344 cm-1) and G-band (1574 cm 1) shifted significantly and the ID/ IG value of the GO/MMT composite was calculated to be 1.13, showing a change in the GO structure. In the addition of 0.04 wt% GO to MMT, the value of interlayer space (d) was up to 13.0 Ameasured by XRD due to the insertion of GO into MMT. The evident increases in contents of carbon atoms (26.59%) and nitrogen atoms (3.44%) indicate that GO was successfully combined with MMT. The nano-pores and clay sheets were not observed in the SEM image of GO/clay, but obvious wrinkles, while flexible sheets were observed in the typical scanning electron microscopy images of GO. This further proves that GO was combining with clay. The TEM image shows that the GO nano-sheets were tiled on the surface of MMT sheets. This observation suggests that a stable assembly structure was formed between GO sheets and MMT sheets. The change in particle size of MMT with the addition of GO shows that interaction occurred between GO sheets and MMT sheets, which was further confirmed by the results of zeta potential. Adsorption and insertion were the main mechanisms to assemble GO and MMT.展开更多
Based on the amphiphobic theory on underground rock surface, a super-amphiphobic agent is developed and evaluated which can form nano-micro papilla structure on rock, filter cake and metal surface, reduce surface free...Based on the amphiphobic theory on underground rock surface, a super-amphiphobic agent is developed and evaluated which can form nano-micro papilla structure on rock, filter cake and metal surface, reduce surface free energy, prevent collapse, protect reservoir, lubricate and increase drilling speed. With this super-amphiphobic agent as the core agent, a super-amphiphobic, strong self-cleaning and high-performance water-based drilling fluid system has been developed by combining with other agents based on drilled formation, and compared with high-performance water-based drilling fluid and typical oil based drilling fluid commonly used in oilfields. The results show that the super-amphiphobic, strong self-cleaning and high-performance water-based drilling fluid has better rheology, and high temperature and high pressure filtration similar with that of oil-based drilling fluid, inhibiting and lubricating properties close to oil based drilling fluid. Besides, the super-amphiphobic system is non-toxic, safe and environmentally friendly. Field tests show this newly developed drilling fluid system can prevent wellbore collapse, reservoir damage and pipe-sticking, increase drilling speed and lower drilling cost, meeting the requirement of safe, high efficient, economic and environmentally friendly drilling. Compared with other drilling fluids, this new drilling fluid system can reduce downhole complexities by 82.9%, enhance the drilling speed by about 18.5%, lower drilling fluid cost by 39.3%, and increase the daily oil output by more than 1.5 times in the same block.展开更多
By summarizing the composition,classification,and performance characterization of functional adhesive materials,the adhesion mechanisms of functional adhesive materials,such as adsorption/surface reaction,diffusion,me...By summarizing the composition,classification,and performance characterization of functional adhesive materials,the adhesion mechanisms of functional adhesive materials,such as adsorption/surface reaction,diffusion,mechanical interlocking,and electrostatic adsorption,are expounded.The research status of these materials in oil and gas drilling and production engineering field such as lost circulation prevention/control,wellbore stabilization,hydraulic fracturing,and profile control and water plugging,and their application challenges and prospects in oil and gas drilling and production are introduced comprehensively.According to the applications of functional adhesive materials in the field of oil and gas drilling and production at this stage,the key research directions of functional adhesive materials in the area of oil and gas drilling and production are proposed:(1)blending and modifying thermoplastic resins or designing curable thermoplastic resins to improve the bonding performance and pressure bearing capacity of adhesive lost circulation materials;(2)introducing low-cost adhesive groups and positive charge structures into polymers to reduce the cost of wellbore strengthening agents and improve their adhesion performance on the wellbore;(3)introducing thermally reversible covalent bond into thermosetting resin to prevent backflow of proppant and improve the compressive strength of adhesive proppant;(4)introducing thermally reversible covalent bonds into thermoplastic polymers to improve the temperature resistance,salt-resistance and water shutoff performance of adhesive water shutoff agents.展开更多
Drilling technologies based on oil-based drillingfluids and strong inhibitory saltwaterfluids are affected by draw-backs such as downhole accidents where sticking and wellbore instabilities occur.Existing polyamine dril...Drilling technologies based on oil-based drillingfluids and strong inhibitory saltwaterfluids are affected by draw-backs such as downhole accidents where sticking and wellbore instabilities occur.Existing polyamine drillingfluids also exhibit problems such as easy decomposition and poor inhibition performances.In order to mitigate these issues,additives can be used,such as polyamine inhibitors and the synthesis of nanometerfiltrate reducers.Tests conducted in the frame of this study with a polyamine drillingfluid and such additives show that thisfluid has the same inhibitory,plugging,lubricating,and wellbore-stability performances as oil-based drillingfluids.However,it has long-term anti-wear performances even better than those of oil-based drillingfluids.The out-comes of a series of comparisons with other sample cases(other wells)are reported and the advantages related to the proposedfluid discussed in detail.展开更多
Interactions between aqueous drilling fluids and clay minerals have been identified as an important factor in wellbore instability of shale formations. Current wellbore stability models consider the interactions betwe...Interactions between aqueous drilling fluids and clay minerals have been identified as an important factor in wellbore instability of shale formations. Current wellbore stability models consider the interactions between aqueous drilling fluids and pore fluid but the interactions with shale matrix are neglected. This study provides a realistic method to incorporate the interaction mechanism into wellbore stability analysis through laboratory experiment and mathematical modeling. The adsorption isotherms of two shale rocks, Catoosa Shale and Mancos Shale are obtained. The adsorption isotherms of the selected shales are compared with those of other shale types in the literature. This study shows that the adsorption theory can be used to generalize wellbore stability problem in order to consider the case of non-ideal drilling fluids. Furthermore, the adsorption model can be combined with empirical correlations to update the compressive strength of shale under downhole conditions. Accordingly, a chemo-poro-elastic wellbore stability simulator is developed to explore the stability of transversely isotropic shale formations. The coupled transport equations are solved using an implicit finite difference method. The results of this study indicate that the range of safe mud weight reduces due to the moisture adsorption phenomenon.展开更多
The ROP(rate of penetration)within the horizontal section of shale gas wells in the Luzhou oil field is low,seriously delaying the exploration and development process.It is proved that reducing mud density mitigates t...The ROP(rate of penetration)within the horizontal section of shale gas wells in the Luzhou oil field is low,seriously delaying the exploration and development process.It is proved that reducing mud density mitigates the bottom-hole differential pressure(ΔP)and increases the ROP during overbalanced drilling.However,wellbore collapse may occur when wellbore pressure is excessively low.It is urgent to ascertain the optimal equilibrium point between improving ROP and maintaining wellbore stability.The safe mud weight window and the lower limit of mud density in the horizontal section of the Luzhou block are predicted using the piecewise fitting method based on conventional logging data.Then,the accuracy of the collapse pressure prediction was verified using the distinct element method(DEM),and the effect of wellbore pressure,in-situ stress,rock cohesion,and natural fracture density on borehole collapse was investigated.Finally,a fitting model ofΔP and ROP of the horizontal section in the Luzhou block is established to predict ROP promotion potential after mud density reduction.The field application of this approach,demonstrated in 8 horizontal wells in the Luzhou block,effectively validates the efficiency of reducing mud density for ROP improvement.This study provides a useful method for simultaneously improving ROP and maintaining wellbore stability and offers significant insights for petroleum engineers in the design of drilling parameters.展开更多
The finite element analysis (FEA) technology by hydraulic-mechanical-damage (HMD) coupling is proposed in this paper for wellbore stability analysis of transversely isotropic rock, developed basing on the recently...The finite element analysis (FEA) technology by hydraulic-mechanical-damage (HMD) coupling is proposed in this paper for wellbore stability analysis of transversely isotropic rock, developed basing on the recently established FEA technology for iso- tropic rock. The finite element (FE) solutions of numerical wellbore model, damage tensor calculation and Pariseau strength criterion for transversely isotropic rock are developed for researching the wellbore failure characteristics and computing the collapse and fracture pressure of laminated rock as shale reservoirs. The classic Blot constitutive for rock as porous medium is introduced to establish a set of FE equations coupling with elastic solid deformation and seepage flow. To be in accord with the inclined wellbore situation, the coordinate transformation for global, wellbore, in-situ stress and transversely isotropic for- mation coordinate systems is established for describing the in-situ stress field and the results in laminated rock. To be in accord with the practical situation, a three-dimensional FIE model is developed, in which several other auxiliary technologies are com- prehensively utilized, e.g., the typical Weibull distribution function for heterogeneous material description and adaptive tech- nology for mesh refinement. The damage tensor calculation technology for transversely isotropic rock are realized from the well-developed continuum damage variable of isotropic rock. The rock is subsequently developed into a novel conceptual and practical model considering the stress and permeability with the damage. The proposed method utilizing Parisean strength cri- terion fully reflects the strength parameters parallel or perpendicular to bedding of the transversely isotropic rock. To this end, an effective and reliable numerically three-step FEA strategy is well established. Numerical examples are given to show that the proposed method can establish efficient and applicable FE model and be suitable for analyzing the state of pore pressure and stress surrounding wellbore, furthermore to demonstrate the effectiveness and reliability of the instability analysis of wellbore failure region and the safe mud weight computation for collapse and fracture pressure of transversely isotropic rock.展开更多
基金This work is financially sponsored by Tarim Oilfield“Study on Adaptability Evaluation and Parameter Optimization of Completion Technology in Bozi Block,Tarim Oilfield”(Item Number:201021113436).
文摘The variation of the principal stress of formations with the working and geo-mechanical conditions can trigger wellbore instabilities and adversely affect the well completion.A finite element model,based on the theory of poro-elasticity and the Mohr-Coulomb rock damage criterion,is used here to analyze such a risk.The changes in wellbore stability before and after reservoir acidification are simulated for different pressure differences.The results indicate that the risk of wellbore instability grows with an increase in the production-pressure difference regardless of whether acidification is completed or not;the same is true for the instability area.After acidizing,the changes in the main geomechanical parameters(i.e.,elastic modulus,Poisson’s ratio,and rock strength)cause the maximum wellbore instability coefficient to increase.
基金the National Natural Science Foundation of China (U1762212 and 51904329)the Shandong Natural Science Foundation (ZR2019BEE002)
文摘Wellbore stability is essential for safe and efficient drilling during oil and gas exploration and development.This paper introduces a hydrophobic nano-silica(HNS)for use in strengthening the wellbore wall when using a water-based drilling fluid(WBF).The wellbore-strengthening performance was studied using the linear swelling test,hot-rolling recovery test,and compressive strength test.The mechanism of strengthening the wellbore wall was studied by means of experiments on the zeta potential,particle size,contact angle,and surface tension,and with the use of a scanning electron microscope(SEM).The surface free energy changes of the shale before and after HNS treatment were also calculated using the contact angle method.The experimental results showed that HNS exhibited a good performance in inhibiting shale swelling and dispersion.Compared with the use of water,the use of HNS resulted in a 20%smaller linear swelling height of the bentonite pellets and an 11.53 times higher recovery of water-sensitive shale—a performance that exceeds those of the commonly used shale inhibitors KCl and polyamines.More importantly,the addition of HNS was effective in preventing a decrease in shale strength.According to the mechanism study,the good wellbore-strengthening performance of HNS can be attributed to three aspects.First,the positively charged HNS balances parts of the negative charges of clay by means of electrostatic adsorption,thus inhibiting osmotic hydration.Second,HNS fabricates a lotus-leaf-like surface with a micro-nano hierarchical structure on shale after adsorption,which significantly increases the water contact angle of the shale surface and considerably reduces the surface free energy,thereby inhibiting surface hydration.Third,the decrease in capillary action and the effective plugging of the shale pores reduce the invasion of water and promote wellbore stability.The approach described herein may provide an avenue for inhibiting both the surface hydration and the osmotic hydration of shale.
基金financially supported by the National Natural Science Foundation of China(51974353,51991362)Natural Science Foundation of Shandong Province(ZR2019ZD14)CNPC’s Major Science and Technology Projects(ZD2019-184-003)。
文摘Natural gas hydrate(NGH)reservoirs consist of the types of sediments with weak cementation,low strength,high plasticity,and high creep.Based on the kinetics and thermodynamic characteristics of NGH decomposition,herein a heat-fluid-solid coupling model was established for studying the wellbore stability in an NGH-bearing formation to analyze the effects of the creep characteristics of NGH-bearing sediments during long-term drilling.The results demonstrated that the creep characteristics of sediments resulted in larger plastic yield range,thus aggravating the plastic strain accumulation around the wellbore.Furthermore,the creep characteristics of NGH-bearing sediments could enhance the effects induced by the difference in horizontal in situ stress,as a result,the plastic strain in the formation around the wellbore increased nonlinearly with increasing difference in in situ stress.The lower the pore pressure,the greater the stress concentration effects and the higher the plastic strain at the wellbore.Moreover,the lower the initial NGH saturation,the greater the initial plastic strain and yield range and the higher the equivalent creep stress.The plastic strain at the wellbore increased nonlinearly with decreasing initial saturation.
基金supported by the Major National Science and Technology Program(Nos.2008ZX05026-00411 and 2011ZX05026-004-08)the Program for Changjiang Scholars and Innovative Research Team in University(No.RT1086)
文摘As the oil or gas exploration and development activities in deep and ultra- deep waters become more and more, encountering gas hydrate bearing sediments (HBS) is almost inevitable. The variation in temperature and pressure can destabilize gas hydrate in nearby formation around the borehole, which may reduce the strength of the formation and result in wellbore instability. A non-isothermal, transient, two-phase, and fluid-solid coupling mathematical model is proposed to simulate the complex stability performance of a wellbore drilled in HBS. In the model, the phase transition of hydrate dissociation, the heat exchange between drilling fluid and formation, the change of mechanical and petrophysical properties, the gas-water two-phase seepage, and its interaction with rock deformation are considered. A finite element simulator is developed, and the impact of drilling mud on wellbore instability in HBS is simulated. Results indicate that the re- duction in pressure and the increase in temperature of the drilling fluid can accelerate hydrate decomposition and lead to mechanical properties getting worse tremendously. The cohesion decreases by 25% when the hydrate totally dissociates in HBS. This easily causes the wellbore instability accordingly. In the first two hours after the formation is drilled, the regions of hydrate dissociation and wellbore instability extend quickly. Then, with the soaking time of drilling fluid increasing, the regions enlarge little. Choosing the low temperature drilling fluid and increasing the drilling mud pressure appropriately can benefit the wellbore stability of HBS. The established model turns out to be an efficient tool in numerical studies of the hydrate dissociation behavior and wellbore stability of HBS.
文摘Wellbore stability analysis is a growing concern in oil industries. There are many parameters affecting the stability of a wellbore including geomechanical properties (e.g., elastic modulus, uni-axial compressive strength (UCS) and cohesion) and acting forces (e.g., field stresses and mud pressure). Accurate determination of these parameters is time-consuming, expensive and sometimes even impossible. This work offers a systematic sensitivity analysis to quantify the amount of each parameter’s effect on the stability of a wellbore. Maximum wellbore wall displacement is used as a stability factor to study the stability of a wellbore. A 3D finite difference method with Mohr model is used for the numerical modeling. The numerical model is verified against an analytical solution. A dimensionless sensitivity factor is developed in order to compare the results of various parameters in the sensitivity analysis. The results show a different order of importance of parameters based on rock strength. The most sensitive properties for a weak rock are the maximum horizontal stress, internal friction angle and formation pressure, respectively, while for a strong rock, the most sensitive parameters are the maximum horizontal stress, mud pressure and pore pressure, respectively. The amount of error in wellbore stability analysis inflicted by the error in estimation of each parameter was also derived.
基金This work was supported by the National Natural Science Foundation of China(No.41772151)the National Science and Technology Major Project of the Ministry of Science and Technology of China(No.2011ZX05020-007-06)the Application Basic Research Project of Sichuan Province(No.2014JY0092)。
文摘Wellbore collapse frequently happens in the clay shale formation.To maintain wellbore stability,appropriate mud pressure is a vital factor.When clay formation is opened,drilling unloading occurs,modifying rock structure and strength at the wall of borehole,which affects the selection of mud pressure.Currently,mechanism of drilling unloading is still poorly understood which in return will bring a concern to wellbore stability.Therefore,in this study,a combination of triaxial compressive test and ultrasonic wave test has been used to simulate drilling unloading and analyze its mechanism.Results indicate that more void space is created inside the clay shale sample due to unloading.This structure change leads to a decline of strength and acoustic amplitude.Additionally,unloading influence is depended on varying drilling unloading parameters.Small unloading range and fast unloading rate are able to enhance stability.With various degrees of unloading impact,collapse pressure equivalent density has a clear modification,proving that unloading is a non-negligible influencing factor of wellbore stability.Besides,the unloading effect is much stronger in large confining pressure,implying that more attention should be given to unloading when drilling is in extreme deep or high geostress formation.Findings in this paper can offer theoretical guidance for drilling in the clay shale formation.
文摘Wellbore instability is a key problem restricting efficient production of coal-bed methane. In order to perform thorough and systematic research regarding coal-bed wellbore stability problems, a new discrete element model which fully considers the features of cleat coal-beds is established based on the Kirsch equation. With this model, the safe pipe tripping speed, drilling fluid density window and coal- bed collapse/fracture pressure are determined; in addition, the relationships between pipe tripping speed and pipe size, cleat size, etc. and wellbore stability are analyzed in the coal-bed drilling and pipe tripping processes. The case studies show the following results: the wellbore collapses (collapse pressure: 4.33 MPa) or fractures (fracture pressure: 12.7 MPa) in certain directions as a result of swab or surge pressure when the pipe tripping speed is higher than a certain value; the cleat face size has a great influence on wellbore stability, and if the drilling fluid pressure is too low, the wellbore is prone to collapse when the ratio of the face cleat size to butt cleat size is reduced; however, if the drilling fluid pressure is high enough, the butt cleat size has no influence on the wellbore fracture; the factors influencing coal-bed stability include the movement length, pipe size, borehole size.
基金financially supported by the National Science Foundation of China (No.51374233)Shandong Province Science Foundation (No.ZR2013EEM032)+1 种基金the Fundamental Research Funds for the Central Universities (No.13CX02044A)the Project of China Scholarship Council (201306455021)
文摘In order to overcome serious instability prob- lems in hydratable shale formations, a novel electropositive wellbore stabilizer (EPWS) was prepared by a new approach. It has good colloidal stability, particle size dis- tribution, compatibility, sealing property, and flexible adaptability. A variety of methods including measurements of particle size, Zeta potential, colloidal stability, contact angle, shale stability index, shale dispersion, shale swelling, and plugging experiments were adopted to characterize the EPWS and evaluate its anti-sloughing capacity and flexible adaptability. Results show that the EPWS has advantages over the conventional wellbore stabilizer (ZX-3) in particle size distribution, colloidal stability, inhibition, compatibil- ity, and flexible adaptability. The EPWS with an average particle size of 507 nm and an average Zeta potential of 54 mV could be stable for 147 days and be compatible with salt tolerant or positive charged additives, and it also exhibited preferable anti-sloughing performance to hydrat- able shales at 77, 100, and 120 ~C, and better compatibility with sodium bentonite than ZX-3 and KC1. The EPWS can plug micro-fractures and pores by forming a tight external mud cake and an internal sealing belt to retard pressure transmission and prevent filtrate invasion, enhancing hydrophobicity of shale surfaces by adsorption to inhibithydration. The EPWS with flexible adaptability to tem- perature for inhibition and sealing capacity is available for long open-hole sections during drilling.
基金Supported by the National Natural Science Foundation of China(42202194)Science and Technology Cooperation Project of the CNPC-SWPU Innovation Alliance(2020CX040102).
文摘According to the transversely isotropic theory and weak plane criterion, and considering the mechanical damages due to stress unloading and hydration during drilling, a shale wellbore stability model with the influence of stress unloading and hydration was established using triaxial test and shear test. Then, factors influencing the wellbore stability in shale were analyzed. The results indicate that stress unloading occurs during drilling in shale. The larger the confining pressure and axial stress, the more remarkable weakening of shale strength caused by stress unloading. The stress unloading range is positively correlated with the weakening degree of shale strength. Shale with a higher development degree of bedding is more prone to damage along bedding. In this case, during stress unloading, the synergistic effect of weak structural plane and stress unloading happens, leading to a higher weakening degree of shale strength and poorer mechanical stability, which brings a higher risk of wellbore instability. Fluid tends to invade shale through bedding, promoting the shale hydration. Hydration also can weaken shale mechanical stability, causing the decline of wellbore stability. Influence of stress unloading on collapse pressure of shale mainly occurs at the early stage of drilling, while the influence of hydration on wellbore stability mainly happens at the late stage of drilling. Bedding, stress unloading and hydration jointly affect the wellbore stability in shale. The presented shale wellbore stability model with the influence of stress unloading and hydration considers the influences of the three factors. Field application demonstrates that the prediction results of the model agree with the actual drilling results, verifying the reliability of the model.
基金Supported by the CNPC Scientific Research and Technological Development Project(2021DJ3804)Scientific Research and Technological Development Project of PetroChina Company Limited(2020E-2803(JT))China CNPC Low Carbon Strategic Forward-Looking Major Science and Technology Project(2021DJ6601).
文摘Through embedding modified nano-silica particles on the surface of polystyrene using the method of Pickering emulsion polymerization,a kind of nano/micro oleophobic agent named OL-1 was developed.The effects of OL-1 on the rock surface properties and its performance in inhibiting the oil phase imbibition into the rock were explored.The performance and mechanisms of OL-1 in improving the wellbore stability of shale gas wells were evaluated and analyzed.OL-1 could absorb on the surface of the shale core to form a membrane with a micro-nano two-stage roughness,making the surface energy of the core decrease to 0.13 mN/m and the contact angle of the white oil on the core surface increase from 16.39°to 153.03°.Compared with the untreated capillary tube,when immersed into 3#white oil,the capillary tube treated by OL-1 had a reversal of capillary pressure from 273.76 Pa to-297.71 Pa,and the oil imbibition height inside the capillary tube decreased from 31 mm above the external liquid level to 33 mm below the external liquid level.The amount of oil invading into the rock core modified by OL-1 decreased by 64.29%compared with the untreated one.The shale core immersed into the oil-based drilling fluids with 1%OL-1 had a porosity reduction rate of only 4.5%.Compared with the core immersed in the drilling fluids without OL-1,the inherent force of the core treated by 1%OL-1 increased by 24.9%,demonstrating that OL-1 could effectively improve the rock mechanical stability by inhibiting oil phase imbibition.
文摘We report a phase inversion polymer coating as a novel concept with potential to prevent clay swelling and fines generation in coal seam gas, or other petroleum, wellbores. Our approach uses polyethersulfone (PES) with N-methyl-2- pyrrolidone (NMP) as a water-soluble solvent to form a dense, low-porosity film across the clay-rich interburden layers, but a porous and permeable membrane on coal seams. This contrasting behaviour occurs because the coal contains much more free water than the clay-rich interburden layers. We demonstrate the efficacy of the method to prevent clay spalling in immersion tests and under a flow of fresh water in a visual swell test apparatus. The clay-rich rocks studied were mudstone and siltstone, and these were dip coated in the PES/NMP solution. The uncoated mudstone swelled and broke apart quickly in the immersion test and visual flow test, but the PES coated rock samples were stable for 30 days. The coated rock and coal samples were characterised by X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy. The morphology of coated mudstone and coated coal samples showed that the polymer formed a dense layer across the low-permeability mudstone, but an open porous structure on the coal surface. The effect of the coating on the permeability of KCl brine through coal was measured in a core-flood apparatus. Although the permeability of the coal showed some deterioration after coating, from (0.58 ± 0.12) mD to (0.3 ±0.03) mD, these results demonstrate the potential of a smart polymer coating to prevent clay swelling while remaining permeable to gas and water on coal layers.
基金support from CNPC Chuanqing Drilling Engineering Company Limited,Chinathe“academic pass”of Southwest Petroleum Universitythe China Postdoctoral Science Foundation(2022M712644)
文摘Considering the increasing environmental pressure,environmentally friendly and high-performance water-based drilling fluids(WBDFs)have been widely studied in recent years to replace the commonly used oil-based drilling fluids(OBDFs).However,few of these drilling fluids are entirely composed of natural materials,which makes it difficult to achieve real environmental protection.Using laponite nanoparticles and various derivatives of natu ral mate rials,including cro sslinked starch,cellulose composite,gelatin ammonium salt,poly-l-arginine,and polyanionic cellulose,a kind of environmentally friendly water-based drilling fluid(EF-WBDF)was built for drilling in environment-sensitive areas.The properties of this EF-WBDF were evaluated by thermal stability tests on rheology,filtration,inhibition,and salt contamination.Besides,biological toxicity,biodegradability,heavy mental content and wheat cultivation tests were conducted to investigate the environmental factor of EF-WBDF.Results showed that EF-WBDF displayed satisfactory thermal resistance up to 150℃,and the rheological properties did not suffer significant fluctuation,showing potential application in high-temperature wells.The optimal rheological model of EF-WBDF was Herschel-Bulkley model.This EF-WBDF performed an eligible filtration of 14.2 mL at 150℃and a differential pressure of 3.5 MPa.This fluid could still maintain colloidal stability after being contaminated by 7.5%NaCl or 0.5%CaC1_(2).Meanwhile,rather low clay swelling degree of 2.44 mm and high shale recovery of more than 95%ensured the inhibitive capability of EF-WBDF.Furthermore,EF-WBDF presented a half maximal effective concentration(EC_(50))of51200 mg/L and a BOD/COD ratio of 47.55%,suggesting that EF-WBDF was non-toxic and easily biodegradable.The wheat cultivated in EF-WBDF could grow healthily,beneficial for reducing the adverse impact on ecological environment.The formed EF-WBDF has a promising future for drilling in environment-sensitive and high-temperature areas.
基金the National Natural Science Foundation of China(51904329,52174014)the Major Scientific and Technological Projects of CNPC(ZD 2019-183-005)Key R&D Program of Shandong Province(No.2020ZLYS07).
文摘Wellbore instability,especially drilling with water-based drilling fluids(WBDFs)in complex shale for-mations,is a critical challenge for oil and gas development.The purpose of this paper is to study the feasibility of using hydrophobically modified silica nanoparticle(HMN)to enhance the comprehensive performance of WBDFs in the Xinjiang Oilfield,especially the anti-collapse performance.The effect of HMN on the overall performance of WBDFs in the Xinjiang Oilfield,including inhibition,plugging,lu-bricity,rheology,and filtration loss,was studied with a series of experiments.The mechanism of HMN action was studied by analyzing the changes of shale surface structure and chemical groups,wettability,and capillary force.The experimental results showed that HMN could improve the performance of WBDFs in the Xinjiang Oilfeld to inhibit the hydration swelling and dispersion of shale.The plugging and lubrication performance of the WBDFs in the Xinjiang Oilfield were also enhanced with HMN based on the experimental results.HMN had less impact on the rheological and filtration performance of the WBDFs in the Xinjiang Oilfield.In addition,HMN significantly prevented the decrease of shale strength.The potential mechanism of HMN was as follows.The chemical composition and structure of the shale surface were altered due to the adsorption of HMN driven by electrostatic attraction.Changes of the shale surface resulted in significant wettability transition.The capillary force of the shale was converted from a driving force of water into the interior to a resistance.In summary,hydrophobic nanoparticles presented afavorable application potential for WBDFs.
基金the Postdoctoral Science Foundation(H29216)the New Method and Technology Foundation of China National Petroleum Corporation(2014A-4212)for their financial support
文摘Graphene oxide (GO) nano-sheets were synthesized using a modified Hummers' method from graphite powder. The Raman spectrum of GO displayed a D-band at 1359 cm-1 and a G-band at 1594 cm-l. The ID/IG value of GO was calculated to be 0.97, suggesting the formation of new sp2 clusters upon reduction. A method was designed to investigate the assembly of the GO/montmorillonite (MMT) composite. After the addition of GO, the typical peaks of montmorillonite in FT-IR spectra shifted, indicating the assembly between GO and MMT. The D-band and G-band reduced sharply in the GO/MMT composite. More importantly, the D-band (1344 cm-1) and G-band (1574 cm 1) shifted significantly and the ID/ IG value of the GO/MMT composite was calculated to be 1.13, showing a change in the GO structure. In the addition of 0.04 wt% GO to MMT, the value of interlayer space (d) was up to 13.0 Ameasured by XRD due to the insertion of GO into MMT. The evident increases in contents of carbon atoms (26.59%) and nitrogen atoms (3.44%) indicate that GO was successfully combined with MMT. The nano-pores and clay sheets were not observed in the SEM image of GO/clay, but obvious wrinkles, while flexible sheets were observed in the typical scanning electron microscopy images of GO. This further proves that GO was combining with clay. The TEM image shows that the GO nano-sheets were tiled on the surface of MMT sheets. This observation suggests that a stable assembly structure was formed between GO sheets and MMT sheets. The change in particle size of MMT with the addition of GO shows that interaction occurred between GO sheets and MMT sheets, which was further confirmed by the results of zeta potential. Adsorption and insertion were the main mechanisms to assemble GO and MMT.
基金Supported by China National Science and Technology Major Project(2017ZX05009-003)National Natural Science Foundation(51474231)China National Petroleum Corporation Project(HX20180961)
文摘Based on the amphiphobic theory on underground rock surface, a super-amphiphobic agent is developed and evaluated which can form nano-micro papilla structure on rock, filter cake and metal surface, reduce surface free energy, prevent collapse, protect reservoir, lubricate and increase drilling speed. With this super-amphiphobic agent as the core agent, a super-amphiphobic, strong self-cleaning and high-performance water-based drilling fluid system has been developed by combining with other agents based on drilled formation, and compared with high-performance water-based drilling fluid and typical oil based drilling fluid commonly used in oilfields. The results show that the super-amphiphobic, strong self-cleaning and high-performance water-based drilling fluid has better rheology, and high temperature and high pressure filtration similar with that of oil-based drilling fluid, inhibiting and lubricating properties close to oil based drilling fluid. Besides, the super-amphiphobic system is non-toxic, safe and environmentally friendly. Field tests show this newly developed drilling fluid system can prevent wellbore collapse, reservoir damage and pipe-sticking, increase drilling speed and lower drilling cost, meeting the requirement of safe, high efficient, economic and environmentally friendly drilling. Compared with other drilling fluids, this new drilling fluid system can reduce downhole complexities by 82.9%, enhance the drilling speed by about 18.5%, lower drilling fluid cost by 39.3%, and increase the daily oil output by more than 1.5 times in the same block.
基金Supported by National Natural Science Foundation of China(51991361,52074327)Major Engineering Technology Field Test Project of CNPC(2020F-45)。
文摘By summarizing the composition,classification,and performance characterization of functional adhesive materials,the adhesion mechanisms of functional adhesive materials,such as adsorption/surface reaction,diffusion,mechanical interlocking,and electrostatic adsorption,are expounded.The research status of these materials in oil and gas drilling and production engineering field such as lost circulation prevention/control,wellbore stabilization,hydraulic fracturing,and profile control and water plugging,and their application challenges and prospects in oil and gas drilling and production are introduced comprehensively.According to the applications of functional adhesive materials in the field of oil and gas drilling and production at this stage,the key research directions of functional adhesive materials in the area of oil and gas drilling and production are proposed:(1)blending and modifying thermoplastic resins or designing curable thermoplastic resins to improve the bonding performance and pressure bearing capacity of adhesive lost circulation materials;(2)introducing low-cost adhesive groups and positive charge structures into polymers to reduce the cost of wellbore strengthening agents and improve their adhesion performance on the wellbore;(3)introducing thermally reversible covalent bond into thermosetting resin to prevent backflow of proppant and improve the compressive strength of adhesive proppant;(4)introducing thermally reversible covalent bonds into thermoplastic polymers to improve the temperature resistance,salt-resistance and water shutoff performance of adhesive water shutoff agents.
文摘Drilling technologies based on oil-based drillingfluids and strong inhibitory saltwaterfluids are affected by draw-backs such as downhole accidents where sticking and wellbore instabilities occur.Existing polyamine drillingfluids also exhibit problems such as easy decomposition and poor inhibition performances.In order to mitigate these issues,additives can be used,such as polyamine inhibitors and the synthesis of nanometerfiltrate reducers.Tests conducted in the frame of this study with a polyamine drillingfluid and such additives show that thisfluid has the same inhibitory,plugging,lubricating,and wellbore-stability performances as oil-based drillingfluids.However,it has long-term anti-wear performances even better than those of oil-based drillingfluids.The out-comes of a series of comparisons with other sample cases(other wells)are reported and the advantages related to the proposedfluid discussed in detail.
文摘Interactions between aqueous drilling fluids and clay minerals have been identified as an important factor in wellbore instability of shale formations. Current wellbore stability models consider the interactions between aqueous drilling fluids and pore fluid but the interactions with shale matrix are neglected. This study provides a realistic method to incorporate the interaction mechanism into wellbore stability analysis through laboratory experiment and mathematical modeling. The adsorption isotherms of two shale rocks, Catoosa Shale and Mancos Shale are obtained. The adsorption isotherms of the selected shales are compared with those of other shale types in the literature. This study shows that the adsorption theory can be used to generalize wellbore stability problem in order to consider the case of non-ideal drilling fluids. Furthermore, the adsorption model can be combined with empirical correlations to update the compressive strength of shale under downhole conditions. Accordingly, a chemo-poro-elastic wellbore stability simulator is developed to explore the stability of transversely isotropic shale formations. The coupled transport equations are solved using an implicit finite difference method. The results of this study indicate that the range of safe mud weight reduces due to the moisture adsorption phenomenon.
基金supported by National Natural Science Foundation of China(No.52074312 and No.52211530097)CNPC Science and Technology Innovation Foundation(2021DQ02-0505).
文摘The ROP(rate of penetration)within the horizontal section of shale gas wells in the Luzhou oil field is low,seriously delaying the exploration and development process.It is proved that reducing mud density mitigates the bottom-hole differential pressure(ΔP)and increases the ROP during overbalanced drilling.However,wellbore collapse may occur when wellbore pressure is excessively low.It is urgent to ascertain the optimal equilibrium point between improving ROP and maintaining wellbore stability.The safe mud weight window and the lower limit of mud density in the horizontal section of the Luzhou block are predicted using the piecewise fitting method based on conventional logging data.Then,the accuracy of the collapse pressure prediction was verified using the distinct element method(DEM),and the effect of wellbore pressure,in-situ stress,rock cohesion,and natural fracture density on borehole collapse was investigated.Finally,a fitting model ofΔP and ROP of the horizontal section in the Luzhou block is established to predict ROP promotion potential after mud density reduction.The field application of this approach,demonstrated in 8 horizontal wells in the Luzhou block,effectively validates the efficiency of reducing mud density for ROP improvement.This study provides a useful method for simultaneously improving ROP and maintaining wellbore stability and offers significant insights for petroleum engineers in the design of drilling parameters.
基金supported by the National Natural Science Foundation of China(Grant Nos.11372157&11302115)the Doctoral Fund of Ministry of Education of China(Grant No.20120002110075)+1 种基金the Foundation for the Author of National Excellent Doctoral Dissertation of China(Grant No.201326)the China Postdoctoral Science Foundation(Grant No.2015M571030)
文摘The finite element analysis (FEA) technology by hydraulic-mechanical-damage (HMD) coupling is proposed in this paper for wellbore stability analysis of transversely isotropic rock, developed basing on the recently established FEA technology for iso- tropic rock. The finite element (FE) solutions of numerical wellbore model, damage tensor calculation and Pariseau strength criterion for transversely isotropic rock are developed for researching the wellbore failure characteristics and computing the collapse and fracture pressure of laminated rock as shale reservoirs. The classic Blot constitutive for rock as porous medium is introduced to establish a set of FE equations coupling with elastic solid deformation and seepage flow. To be in accord with the inclined wellbore situation, the coordinate transformation for global, wellbore, in-situ stress and transversely isotropic for- mation coordinate systems is established for describing the in-situ stress field and the results in laminated rock. To be in accord with the practical situation, a three-dimensional FIE model is developed, in which several other auxiliary technologies are com- prehensively utilized, e.g., the typical Weibull distribution function for heterogeneous material description and adaptive tech- nology for mesh refinement. The damage tensor calculation technology for transversely isotropic rock are realized from the well-developed continuum damage variable of isotropic rock. The rock is subsequently developed into a novel conceptual and practical model considering the stress and permeability with the damage. The proposed method utilizing Parisean strength cri- terion fully reflects the strength parameters parallel or perpendicular to bedding of the transversely isotropic rock. To this end, an effective and reliable numerically three-step FEA strategy is well established. Numerical examples are given to show that the proposed method can establish efficient and applicable FE model and be suitable for analyzing the state of pore pressure and stress surrounding wellbore, furthermore to demonstrate the effectiveness and reliability of the instability analysis of wellbore failure region and the safe mud weight computation for collapse and fracture pressure of transversely isotropic rock.