The electron density recorded onboard the DEMETER satellite was analyzed to search for possible anomalies before earthquakes both in space and time. To distinguish pre-earthquake anomalies from the other anomalies rel...The electron density recorded onboard the DEMETER satellite was analyzed to search for possible anomalies before earthquakes both in space and time. To distinguish pre-earthquake anomalies from the other anomalies related to geomagnetic activity, data were filtered using the Kp index. The analysis is based on the comparison of data recorded closely to earthquakes in space and time and past data for the same area. In analyzing data around the time and location of the Pu'er and Wenchuan earthquakes, obvious anomalies in electron density were found close to the epicenters, and some remarkable disturbances were detected before the earthquakes occurred. The results were finally compared with those of previous works that used the same data but employed different analysis methods. Good agreement was found which suggests that these anomalies have a close relation to the earthquake preparation.展开更多
New Vp and Vs models of the aftershock gap between the 2013 Lushan and 2008 Wenchuan earthquakes were obtained using 7190 events recorded by 102 stations in the southeastern margin of the Tibetan Plateau. The new velo...New Vp and Vs models of the aftershock gap between the 2013 Lushan and 2008 Wenchuan earthquakes were obtained using 7190 events recorded by 102 stations in the southeastern margin of the Tibetan Plateau. The new velocity models and event locations were inverted by the regional-scale version of double-difference tomography algorithm. The new velocity structure shows that the aftershock gap is an obviously low-velocity zone in the upper crust,whereas the aftershock regions of the Lushan and Wenchuan earthquakes show high-velocity anomalies. The low-velocity anomaly of the aftershock gap in the upper crust may indicate that the materials of the gap are weak and ductile,which is not prone to accumulate stress and cause big earthquakes. As a result,it is less likely that the big earthquakes will occur in the gap in the future.展开更多
Determining the main controlling factors of earthquake-triggered geohazards is a prerequisite for studying earthquake geohazards and post-disaster emergency response.By studying these factors,the geomorphic and geolog...Determining the main controlling factors of earthquake-triggered geohazards is a prerequisite for studying earthquake geohazards and post-disaster emergency response.By studying these factors,the geomorphic and geological factors controlling the nature,condition,and distribution of earthquake-induced geohazards can be analyzed.Such insights facilitate earthquake disaster prediction and emergency response planning.The authors combined field investigations and spatial data analysis to examine geohazards induced by seismic events,examining ten earthquakes including the Wenchuan,Yushu,Lushan events,to elucidate the main control factors of seismic geohazard.The authors observed that seismic geohazard occurrence is usually affected by many factors,among which active nature of the seismogenic fault,seismic peak ground acceleration(PGA),topographic slope and geomorphic height differences,and distance from the fault zone and river system are the most important.Compared with strike-slip earthquakes,thrust earthquakes induce more high-altitude and high-speed remote landslides,which can cause great harm.Slopes of 0°–40°are prone to secondary seismic geohazards,which are mainly concentrated 0–6 km from the river system.Secondary geohazards are not only related to seismogenic fault but also influenced by the associated faults in the earthquake area.The maximum seismic PGA and secondary seismic geohazard number are positively correlated,and the horizontal and vertical ground motions play leading and promoting roles in secondary geohazard formation,respectively.Through the research,the spatial distribution of seismic geohazards is predicted,providing a basis for the formulation of emergency response plans following disasters.展开更多
Airblasts,as one common phenomenon accompanied by rapid movements of landslides or rock/snow avalanches,commonly result in catastrophic damages and are attracting more and more scientific attention.To quantitatively a...Airblasts,as one common phenomenon accompanied by rapid movements of landslides or rock/snow avalanches,commonly result in catastrophic damages and are attracting more and more scientific attention.To quantitatively analyze the intensity of airblast initiated by landslides,the Wangjiayan landslide,occurred in the Wenchuan earthquake,is selected here with the landslide propagation and airblast evolution being studied using FLUENT by introducing the Voellmy rheological law.The results reveal that:(1)For the Wangjiayan landslide,its whole travelling duration is only 12 s with its maximum velocity reaching 36 m/s at t=10 s;(2)corresponding to the landslide propagation,the maximum velocity,28 m/s,of the airblast initiated by the landslide also appears at t=10 s with its maximum pressure reaching594.8 Pa,which is equivalent to violent storm;(3)under the attack of airblast,the load suffered by buildings in the airblast zone increases to 1300 Pa at t=9.4 s and sharply decreased to-7000 Pa as the rapid decrease of the velocity of the sliding mass at t=10 s,which is seriously unfavorable for buildings and might be the key reason for the destructive collapse of buildings in the airblast zone of the Wangjiayan landslide.展开更多
To learn the process of urban land evolution before and after an earthquake is vital to formulate the urban reconstruction control policies and recovery measures in the earthquake-stricken areas.However,spatiotemporal...To learn the process of urban land evolution before and after an earthquake is vital to formulate the urban reconstruction control policies and recovery measures in the earthquake-stricken areas.However,spatiotemporal evolution and its driving factors of urban land in earthquake-prone areas remains limited due to the scarcity of ground observation data.This research,leveraging night-time light remote sensing imagery and land cover data,conducted a comprehensive analysis of the long-term evolution characteristics of urban land in earthquake-prone areas.It introduced methodologies for assessing the socio-economic impact and the primary natural environmental factors driving urban land evolution in these regions.To validate the proposed methods,the 2008 Wenchuan earthquake-affected area in China was selected as a representative study area.The results indicated that the average Digital Number(DN)values in socio-economically impacted areas showed a trend of rising,falling,and then rising again after the earthquake.DN values in three types of damaged areas including Type Ⅱ,Type Ⅲ,and Type Ⅳ exceeded pre-earthquake levels.The analysis of determinative factors influencing urban land evolution revealed that slope and elevation were key elements in controlling urban land expansion before the earthquake,whereas factors such as slope,elevation,lithology,and faults had a stronger influence on urban land expansion after the earthquake.It can be seen that,in view of the differences in the natural conditions of regions for post-disaster reconstruction,the local government need to actively adjust and adapt to urban spatial planning,so as to leverage the scale effect of large-scale inputs of funds,facilities,human resources and other factors after the disaster,thus enhancing resilience and recovery efficiency in response to disaster impacts.展开更多
Xinqiao Gully is located in the area of the 2008 Wenchuan M_(s)8.0 earthquake in Sichuan province,China.Based on the investigation of the 2023"6-26"Xinqiao Gully debris flow event,this study assessed the eff...Xinqiao Gully is located in the area of the 2008 Wenchuan M_(s)8.0 earthquake in Sichuan province,China.Based on the investigation of the 2023"6-26"Xinqiao Gully debris flow event,this study assessed the effectiveness of the debris flow control project and evaluated the debris flow hazards.Through field investigation and numerical simulation methods,the indicators of flow intensity reduction rate and storage capacity fullness were proposed to quantify the effectiveness of the engineering measures in the debris flow event.The simulation results show that the debris flow control project reduced the flow intensity by41.05%to 64.61%.The storage capacity of the dam decreases gradually from upstream to the mouth of the gully,thus effectively intercepting and controlling the debris flow.By evaluating the debris flow of different recurrence intervals,further measures are recommended for managing debris flow events.展开更多
As a case study of spatial and temporal variations in earthquake stress drops between the 2008 Ms 8.0 Wenchuan and 2013 Ms 7.0 Lushan earthquakes,we computed 1828 stress-drop values for earthquakes with magnitudes 1.7...As a case study of spatial and temporal variations in earthquake stress drops between the 2008 Ms 8.0 Wenchuan and 2013 Ms 7.0 Lushan earthquakes,we computed 1828 stress-drop values for earthquakes with magnitudes 1.7≤ML≤5.0 during an eight-year time span before and after major earthquakes.We divide the study area into three subregions(the southern segment of the Longmen Shan fault zone;the southwestern junction of the Longmen Shan and Sichuan Basin;and the southwestern margin of the Sichuan Basin)and calculate individual event stress drops in each.The results show that regions of alternating high and low stress drop are found on either side of the southwestern segment of the Longmen Shan fault zone.During the two-year period after the 2008 Ms 8.0 Wenchuan earthquake,the stress state of the southern Longmen Shan fault shows no significant change.A marked increase in stress level appears about 18 months before the 2013 Ms 7.0 Lushan earthquake near the Lushan hypocenter zone.Two months after the Ms 7.0 event,the stress drops suddenly attenuate,with significantly less seismic energy release per event.We find that changes in the patterns of high and low stress drop values are consistent with the process of stress accumulation or transfer from the pre-mainshock to postmainshock periods.The results indicate that major earthquakes are the dominant cause of temporal and spatial evolution in stress levels.Stress drop variations show obvious temporal and spatial patterns that may suggests subtle changes in the character of stress fields on faults and spatial variations related to local intense compression and tectonic effects.展开更多
This thesis discusses the earthquake reflecting ability of the observation well pattern system of Jiangsu Province, China, which has been digitally renovated, and probes into the cause of the major differences in the ...This thesis discusses the earthquake reflecting ability of the observation well pattern system of Jiangsu Province, China, which has been digitally renovated, and probes into the cause of the major differences in the earthquake reflecting abilities of well holes at different measurement points. This is achieved through the analysis of the co-seismic responses to the Wenchuan (2008; Ms8.0, China) and Tohoku (2011; Ms9.0, Japan) earthquakes. We found that the co-seismic response of water level from regional well holes in Jiangsu Province was stronger than that of water temperature. The water-level co-seismic response follows a consistent law and is closely related to the earthquake magnitude. The co-seismic response of water temperature strongly varied among well points, and was more often manifested as a slow restorative change. The co-seismic responses also varied based on tectonic elements. The response in central and northern Jiangsu was weaker than that of southern Jiangsu, possibly due to the thicker loess cover layer in central Jiangsu which makes it less effective at capturing the micro-changes of stress-strain states relative to the hilly land in the south. The more complicated geological structure in southern Jiangsu makes it contribute to greater changes in the state of underground water after a minor disturbance.展开更多
Co-seismic water-level and temperature changes of the 2008 magnitude - 8.0 Wenchuan and the 2011 magnitude-9.0 Japan earthquakes recorded at 10 observation wells in Jiangsu province are presented and analyzed. The dat...Co-seismic water-level and temperature changes of the 2008 magnitude - 8.0 Wenchuan and the 2011 magnitude-9.0 Japan earthquakes recorded at 10 observation wells in Jiangsu province are presented and analyzed. The data show that water level responded more regularly with earthquake magnitude and dis- tance than water temperature. The response was different for wells located in different tectonic units, being weaker in central and northern plain, which has a relatively thick surface layer of loess, than southern Jiangsu, which is hilly.展开更多
Analyzing the aftershock sequence of the 2008 Wenchuan earthquake,we considered 26 micro-earthquakes "just underneath" seismic stations.Making use of such special station-event configurations to determine th...Analyzing the aftershock sequence of the 2008 Wenchuan earthquake,we considered 26 micro-earthquakes "just underneath" seismic stations.Making use of such special station-event configurations to determine the depth of these micro-earthquakes provided accurate relocation of aftershocks with a reference set of "ground truth(GT)events".展开更多
In this study,we investigate how a stress variation generated by a fault that experiences transient postseismic slip(TPS)affects the rate of aftershocks.First,we show that the postseismic slip from Rubin-Ampuero model...In this study,we investigate how a stress variation generated by a fault that experiences transient postseismic slip(TPS)affects the rate of aftershocks.First,we show that the postseismic slip from Rubin-Ampuero model is a TPS that can occur on the main fault with a velocity-weakening frictional motion,that the resultant slip function is similar to the generalized Jeffreys-Lomnitz creep law,and that the TPS can be explained by a continuous creep process undergoing reloading.Second,we obtain an approximate solution based on the Helmstetter-Shaw seismicity model relating the rate of aftershocks to such TPS.For the Wenchuan sequence,we perform a numerical fitting of the cumulative number of aftershocks using the Modified Omori Law(MOL),the Dieterich model,and the specific TPS model.The fitting curves indicate that the data can be better explained by the TPS model with a B/A ratio of approximately 1.12,where A and B are the parameters in the rate-and state-dependent friction law respectively.Moreover,the p and c that appear in the MOL can be interpreted by the B/A and the critical slip distance,respectively.Because the B/A ratio in the current model is always larger than 1,the model could become a possible candidate to explain aftershock rate commonly decay as a power law with a p-value larger than 1.Finally,the influence of the background seismicity rate r on parameters is studied;the results show that except for the apparent aftershock duration,other parameters are insensitive to r.展开更多
Seismologists have found that the first arrival frequencies of P waves at different seismic stations have different widths,that is,different periods or frequencies,and they think that this phenomenon can be used to id...Seismologists have found that the first arrival frequencies of P waves at different seismic stations have different widths,that is,different periods or frequencies,and they think that this phenomenon can be used to identify whether a Doppler effect is induced by earthquakes.However,the fault rupture process of a real earthquake is so complex that it is difficult to identify a frequency shift similar to the Doppler effect.A method to identify whether a Doppler effect is induced by an earthquake is proposed here.If a seismic station is in the direction of fault rupture propagation,this station could observe a Doppler effect induced by the earthquake.The Doppler effect causes the frequency of the seismic wave to shift from low frequency to high frequency,and the high frequency amplitudes become mutually superimposed.Under the combined influences of the absorption effect,geometric spreading effect and Doppler effect,the high frequency amplitude of the seismic wave will gradually become higher than the low frequency amplitude with increasing epicentral distance.If we find that the high frequency amplitude is higher than the low frequency amplitude with increasing epicentral distance in the direction of fault rupture propagation,then there is a Doppler effect.The fault that generated the Wenchuan earthquake is a reverse fault,and its horizontal rupture propagation velocity was low.To link fault rupture propagation velocity with the Doppler effect and identify the Doppler effect more easily,we decompose three-component records into two directions:the direction of fault rupture propagation and the direction perpendicular to the fault rupture propagation along the fault plane.The initial components of the two directions are processed by wavelet transform.Several seismic stations in the direction of fault rupture propagation of the Wenchuan earthquake were selected,and it was found that with increasing epicentral distance,the high frequency amplitudes of the wavelet spectra become obviously higher than the low frequency amplitudes.It can be concluded that due to the existence of the Doppler effect,high frequency amplitudes can overcome the influences of the absorption and geometric spreading effects on seismic waves in the fault rupture propagation process.展开更多
In the research, secondary geological disasters of Wenchuan earthquake were defined and the consequences were illustrated based on geological disasters, such as collapse, landslide and debris flow, and threats of barr...In the research, secondary geological disasters of Wenchuan earthquake were defined and the consequences were illustrated based on geological disasters, such as collapse, landslide and debris flow, and threats of barrier lakes. In addition, the characteristics of secondary disasters were analyzed, as follows: Rupture of geological faults lays foundation in terms of geological structure; loose solids provide resources of an earthquake; abundant rainfall and large runoffs are driving forces of an earthquake; rainstorm, flood, and long-term high temperature are major inducing factors. Furthermore, suggestions on prevention of secondary disasters were proposed in terms of prevention before, at and after an earthquake. Finally, the scientific and practical significances of secondary disasters were illustrated.展开更多
A seismic-induced landslide is a common geological catastrophe that occurs in nature.The Wangjiayan landslide,which was triggered by the Wenchuan earthquake,is a typical case in point.The Wanjiayan landslide caused ma...A seismic-induced landslide is a common geological catastrophe that occurs in nature.The Wangjiayan landslide,which was triggered by the Wenchuan earthquake,is a typical case in point.The Wanjiayan landslide caused many casualties and resulted in enormous property loss.This study constructs a simple surficial failure model based on the upper bound approach of three-dimensional(3D)limit analysis to evaluate the slope stability of the Wangjiayan case,while a traditional two-dimensional(2D)analysis is also conducted as a reference for comparison with the results of the 3D analysis.A quasi-static calculation is used to study the effect of the earthquake in terms of horizontal ground acceleration,while a parametric study is conducted to evaluate the critical cohesion of slopes.Rather than employing a 3D analysis,using the 2D analysis yields an underestimation regarding the safety factor.In the Wangjiayan landslide,the difference in the factors of safety between the 3D and 2D analyses can reach 20%.The sliding surface morphology as determined by the 3D method is similar to actual morphology,and the parameters of both are also compared to analyze the reliability of the proposed 3D method.展开更多
We developed a modified stochastic finite-fault method for estimating strong ground motions.An adjustment to the dynamic corner frequency was introduced,which accounted for the effect of the location of the subfault r...We developed a modified stochastic finite-fault method for estimating strong ground motions.An adjustment to the dynamic corner frequency was introduced,which accounted for the effect of the location of the subfault relative to the hypocenter and rupture propagation direction,to account for the influence of the rupture propagation direction on the subfault dynamic corner frequency.By comparing the peak ground acceleration(PGA),pseudo-absolute response spectra acceleration(PSA,damping ratio of 5%),and duration,the results of the modified and existing methods were compared,demonstrating that our proposed adjustment to the dynamic corner frequency can accurately reflect the rupture directivity effect.We applied our modified method to simulate near-field strong motions within 150 km of the 2008 MW7.9 Wenchuan earthquake rupture.Our modified method performed well over a broad period range,particularly at 0.04-4 s.The total deviations of the stochastic finite-fault method(EXSIM)and the modified EXSIM were 0.1676 and 0.1494,respectively.The modified method can effectively account for the influence of the rupture propagation direction and provide more realistic ground motion estimations for earthquake disaster mitigation.展开更多
A great earthquake broke out in WenChuan. A lot of people were killed, but somany people were rescused by soldiers.Here are stories about three recused pupils.Langzhen, aged three, was rescusedby the soldiers after be...A great earthquake broke out in WenChuan. A lot of people were killed, but somany people were rescused by soldiers.Here are stories about three recused pupils.Langzhen, aged three, was rescusedby the soldiers after being buried in ruinsfor 10 hours.展开更多
The National Strong Motion Observation Network System (NSMONS) of China is briefly introduced in this paper. The NSMONS consists of permanent free-field stations, special observation arrays, mobile observatories and...The National Strong Motion Observation Network System (NSMONS) of China is briefly introduced in this paper. The NSMONS consists of permanent free-field stations, special observation arrays, mobile observatories and a network management system. During the Wenchuan Earthquake, over 1,400 components of acceleration records were obtained from 460 permanent free-field stations and three arrays for topographical effect and structural response observation in the network system from the main shock, and over 20,000 components of acceleration records from strong aftershocks occurred before August 1, 2008 were also obtained by permanent free-field stations of the NSMONS and 59 mobile instruments quickly deployed after the main shock. The strong motion recordings from the main shock and strong aftershocks are summarized in this paper. In the ground motion recordings, there are over 560 components with peak ground acceleration (PGA) over 10 Gal, the largest being 957.7 Gal. The largest PGA recorded during the aftershock exceeds 300 Gal.展开更多
Many highway bridges were severely damaged or completely collapsed during the 2008 Wenchuan earthquake. A field investigation was carried out in the strongly affected areas and over 320 bridges were examined. Damage t...Many highway bridges were severely damaged or completely collapsed during the 2008 Wenchuan earthquake. A field investigation was carried out in the strongly affected areas and over 320 bridges were examined. Damage to some representative highway bridges is briefly described and a preliminary analysis of the probable causes of the damage is presented in this paper. The most common damage included shear-flexural failure of the pier columns, expansion joint failure, shear key failure, and girder sliding in the transversal or longitudinal directions due to weak connections between girder and bearings. Lessons learned from this earthquake are described and recommendations related to the design of curved and skewed bridges, design of bearings and devices to prevent girder collapse, and ductility of bridge piers are presented. Suggestions for future seismic design and retrofitting techniques for bridges in moderate to severe earthquake areas are also proposed.展开更多
An earthquake of Ms 8 struck Wenchuan County, western Sichuan, China, on May 12^th, 2008 and resulted in long surface ruptures (〉300 km). The first-hand observations about the surface ruptures produced by the earth...An earthquake of Ms 8 struck Wenchuan County, western Sichuan, China, on May 12^th, 2008 and resulted in long surface ruptures (〉300 km). The first-hand observations about the surface ruptures produced by the earthquake in the worst-hit areas of Yingxiu, Beichuan and Qingchuan, ascertained that the causative structure of the earthquake was in the central fault zones of the Longmenshan tectonic belt. Average co-seismic vertical displacements along the individual fault of the Yingxiu-Beiehuan rupture zone reach 2.514 m and the cumulative vertical displacements across the central and frontal Longmenshan fault belt is about 5-6 m. The surface rupture strength was reduced from north of Beichuan to Qingchuan County and shows 2-3 m dextral strike-slip component. The Wenchuan thrust-faulting earthquake is a manifestation of eastward growth of the Tibetan Plateau under the action of continuous convergence of the Indian and Eurasian continents.展开更多
The May 12, 2008 Great Wenchuan Earthquake has resulted in more than 68,858 deaths and losses in the hundreds of billions RMB as of May 30, 2008, and these numbers will undoubtedly increase as more information becomes...The May 12, 2008 Great Wenchuan Earthquake has resulted in more than 68,858 deaths and losses in the hundreds of billions RMB as of May 30, 2008, and these numbers will undoubtedly increase as more information becomes available on the extent of the event. Immediately after the earthquake, the China Earthquake Administration (CEA) responded quickly by sending teams of experts to the affected region, eventually including over 60 staff members from the Institute of Engineering Mechanics (IEM). This paper reports preliminary information that has been gathered in the first 18 days after the event, covering seismicity, search and rescue efforts, observed ground motions, and damage and loss estimates. The extensive field investigation has revealed a number of valuable findings that could be useful in improving research in earthquake engineering in the future. Once again, this earthquake has shown that the vertical component of ground motion is as significant as horizontal ground motions in the near-source area. Finally, note that as more information is gathered, the numbers reported in this paper will need to be adjusted accordingly.展开更多
基金supported by the National Key Technology Research and Development Programme of China(No.2008BAC35B02)
文摘The electron density recorded onboard the DEMETER satellite was analyzed to search for possible anomalies before earthquakes both in space and time. To distinguish pre-earthquake anomalies from the other anomalies related to geomagnetic activity, data were filtered using the Kp index. The analysis is based on the comparison of data recorded closely to earthquakes in space and time and past data for the same area. In analyzing data around the time and location of the Pu'er and Wenchuan earthquakes, obvious anomalies in electron density were found close to the epicenters, and some remarkable disturbances were detected before the earthquakes occurred. The results were finally compared with those of previous works that used the same data but employed different analysis methods. Good agreement was found which suggests that these anomalies have a close relation to the earthquake preparation.
文摘New Vp and Vs models of the aftershock gap between the 2013 Lushan and 2008 Wenchuan earthquakes were obtained using 7190 events recorded by 102 stations in the southeastern margin of the Tibetan Plateau. The new velocity models and event locations were inverted by the regional-scale version of double-difference tomography algorithm. The new velocity structure shows that the aftershock gap is an obviously low-velocity zone in the upper crust,whereas the aftershock regions of the Lushan and Wenchuan earthquakes show high-velocity anomalies. The low-velocity anomaly of the aftershock gap in the upper crust may indicate that the materials of the gap are weak and ductile,which is not prone to accumulate stress and cause big earthquakes. As a result,it is less likely that the big earthquakes will occur in the gap in the future.
基金supported by the National Natural Science Foundation of China(41977258)the National Key Research and Development Program of China(2017YFC1501005 and 2018YFC1504704)。
文摘Determining the main controlling factors of earthquake-triggered geohazards is a prerequisite for studying earthquake geohazards and post-disaster emergency response.By studying these factors,the geomorphic and geological factors controlling the nature,condition,and distribution of earthquake-induced geohazards can be analyzed.Such insights facilitate earthquake disaster prediction and emergency response planning.The authors combined field investigations and spatial data analysis to examine geohazards induced by seismic events,examining ten earthquakes including the Wenchuan,Yushu,Lushan events,to elucidate the main control factors of seismic geohazard.The authors observed that seismic geohazard occurrence is usually affected by many factors,among which active nature of the seismogenic fault,seismic peak ground acceleration(PGA),topographic slope and geomorphic height differences,and distance from the fault zone and river system are the most important.Compared with strike-slip earthquakes,thrust earthquakes induce more high-altitude and high-speed remote landslides,which can cause great harm.Slopes of 0°–40°are prone to secondary seismic geohazards,which are mainly concentrated 0–6 km from the river system.Secondary geohazards are not only related to seismogenic fault but also influenced by the associated faults in the earthquake area.The maximum seismic PGA and secondary seismic geohazard number are positively correlated,and the horizontal and vertical ground motions play leading and promoting roles in secondary geohazard formation,respectively.Through the research,the spatial distribution of seismic geohazards is predicted,providing a basis for the formulation of emergency response plans following disasters.
基金supported by the National Natural Science Foundation of China(42322702,42177131)。
文摘Airblasts,as one common phenomenon accompanied by rapid movements of landslides or rock/snow avalanches,commonly result in catastrophic damages and are attracting more and more scientific attention.To quantitatively analyze the intensity of airblast initiated by landslides,the Wangjiayan landslide,occurred in the Wenchuan earthquake,is selected here with the landslide propagation and airblast evolution being studied using FLUENT by introducing the Voellmy rheological law.The results reveal that:(1)For the Wangjiayan landslide,its whole travelling duration is only 12 s with its maximum velocity reaching 36 m/s at t=10 s;(2)corresponding to the landslide propagation,the maximum velocity,28 m/s,of the airblast initiated by the landslide also appears at t=10 s with its maximum pressure reaching594.8 Pa,which is equivalent to violent storm;(3)under the attack of airblast,the load suffered by buildings in the airblast zone increases to 1300 Pa at t=9.4 s and sharply decreased to-7000 Pa as the rapid decrease of the velocity of the sliding mass at t=10 s,which is seriously unfavorable for buildings and might be the key reason for the destructive collapse of buildings in the airblast zone of the Wangjiayan landslide.
基金Foundation of China(Grant No.U21A2032)National Natural Science Foundation of China(Grant No.42371203).
文摘To learn the process of urban land evolution before and after an earthquake is vital to formulate the urban reconstruction control policies and recovery measures in the earthquake-stricken areas.However,spatiotemporal evolution and its driving factors of urban land in earthquake-prone areas remains limited due to the scarcity of ground observation data.This research,leveraging night-time light remote sensing imagery and land cover data,conducted a comprehensive analysis of the long-term evolution characteristics of urban land in earthquake-prone areas.It introduced methodologies for assessing the socio-economic impact and the primary natural environmental factors driving urban land evolution in these regions.To validate the proposed methods,the 2008 Wenchuan earthquake-affected area in China was selected as a representative study area.The results indicated that the average Digital Number(DN)values in socio-economically impacted areas showed a trend of rising,falling,and then rising again after the earthquake.DN values in three types of damaged areas including Type Ⅱ,Type Ⅲ,and Type Ⅳ exceeded pre-earthquake levels.The analysis of determinative factors influencing urban land evolution revealed that slope and elevation were key elements in controlling urban land expansion before the earthquake,whereas factors such as slope,elevation,lithology,and faults had a stronger influence on urban land expansion after the earthquake.It can be seen that,in view of the differences in the natural conditions of regions for post-disaster reconstruction,the local government need to actively adjust and adapt to urban spatial planning,so as to leverage the scale effect of large-scale inputs of funds,facilities,human resources and other factors after the disaster,thus enhancing resilience and recovery efficiency in response to disaster impacts.
基金supported by the project of the China Geological Survey(No.DD20221746)the National Natural Science Foundation of China(Grant Nos.41101086)。
文摘Xinqiao Gully is located in the area of the 2008 Wenchuan M_(s)8.0 earthquake in Sichuan province,China.Based on the investigation of the 2023"6-26"Xinqiao Gully debris flow event,this study assessed the effectiveness of the debris flow control project and evaluated the debris flow hazards.Through field investigation and numerical simulation methods,the indicators of flow intensity reduction rate and storage capacity fullness were proposed to quantify the effectiveness of the engineering measures in the debris flow event.The simulation results show that the debris flow control project reduced the flow intensity by41.05%to 64.61%.The storage capacity of the dam decreases gradually from upstream to the mouth of the gully,thus effectively intercepting and controlling the debris flow.By evaluating the debris flow of different recurrence intervals,further measures are recommended for managing debris flow events.
基金supported by the China Seismic Experiment Site Project(Grant No.2018CSES0209)the Project of Science for Earthquake Resilience(Grant No.XH202302),part of the China Earthquake Administration。
文摘As a case study of spatial and temporal variations in earthquake stress drops between the 2008 Ms 8.0 Wenchuan and 2013 Ms 7.0 Lushan earthquakes,we computed 1828 stress-drop values for earthquakes with magnitudes 1.7≤ML≤5.0 during an eight-year time span before and after major earthquakes.We divide the study area into three subregions(the southern segment of the Longmen Shan fault zone;the southwestern junction of the Longmen Shan and Sichuan Basin;and the southwestern margin of the Sichuan Basin)and calculate individual event stress drops in each.The results show that regions of alternating high and low stress drop are found on either side of the southwestern segment of the Longmen Shan fault zone.During the two-year period after the 2008 Ms 8.0 Wenchuan earthquake,the stress state of the southern Longmen Shan fault shows no significant change.A marked increase in stress level appears about 18 months before the 2013 Ms 7.0 Lushan earthquake near the Lushan hypocenter zone.Two months after the Ms 7.0 event,the stress drops suddenly attenuate,with significantly less seismic energy release per event.We find that changes in the patterns of high and low stress drop values are consistent with the process of stress accumulation or transfer from the pre-mainshock to postmainshock periods.The results indicate that major earthquakes are the dominant cause of temporal and spatial evolution in stress levels.Stress drop variations show obvious temporal and spatial patterns that may suggests subtle changes in the character of stress fields on faults and spatial variations related to local intense compression and tectonic effects.
基金supported by the Scientific and Technological Support Project of Jiangsu Province (No.BS2007084)Seismic Technology Spark Project (No.XH12020)
文摘This thesis discusses the earthquake reflecting ability of the observation well pattern system of Jiangsu Province, China, which has been digitally renovated, and probes into the cause of the major differences in the earthquake reflecting abilities of well holes at different measurement points. This is achieved through the analysis of the co-seismic responses to the Wenchuan (2008; Ms8.0, China) and Tohoku (2011; Ms9.0, Japan) earthquakes. We found that the co-seismic response of water level from regional well holes in Jiangsu Province was stronger than that of water temperature. The water-level co-seismic response follows a consistent law and is closely related to the earthquake magnitude. The co-seismic response of water temperature strongly varied among well points, and was more often manifested as a slow restorative change. The co-seismic responses also varied based on tectonic elements. The response in central and northern Jiangsu was weaker than that of southern Jiangsu, possibly due to the thicker loess cover layer in central Jiangsu which makes it less effective at capturing the micro-changes of stress-strain states relative to the hilly land in the south. The more complicated geological structure in southern Jiangsu makes it contribute to greater changes in the state of underground water after a minor disturbance.
文摘Co-seismic water-level and temperature changes of the 2008 magnitude - 8.0 Wenchuan and the 2011 magnitude-9.0 Japan earthquakes recorded at 10 observation wells in Jiangsu province are presented and analyzed. The data show that water level responded more regularly with earthquake magnitude and dis- tance than water temperature. The response was different for wells located in different tectonic units, being weaker in central and northern plain, which has a relatively thick surface layer of loess, than southern Jiangsu, which is hilly.
文摘Analyzing the aftershock sequence of the 2008 Wenchuan earthquake,we considered 26 micro-earthquakes "just underneath" seismic stations.Making use of such special station-event configurations to determine the depth of these micro-earthquakes provided accurate relocation of aftershocks with a reference set of "ground truth(GT)events".
基金supported by the National Natural Science Foundation of China (Nos.41974068 and 41574040)Key International S&T Cooperation Project of P.R.China (No.2015DFA21260)。
文摘In this study,we investigate how a stress variation generated by a fault that experiences transient postseismic slip(TPS)affects the rate of aftershocks.First,we show that the postseismic slip from Rubin-Ampuero model is a TPS that can occur on the main fault with a velocity-weakening frictional motion,that the resultant slip function is similar to the generalized Jeffreys-Lomnitz creep law,and that the TPS can be explained by a continuous creep process undergoing reloading.Second,we obtain an approximate solution based on the Helmstetter-Shaw seismicity model relating the rate of aftershocks to such TPS.For the Wenchuan sequence,we perform a numerical fitting of the cumulative number of aftershocks using the Modified Omori Law(MOL),the Dieterich model,and the specific TPS model.The fitting curves indicate that the data can be better explained by the TPS model with a B/A ratio of approximately 1.12,where A and B are the parameters in the rate-and state-dependent friction law respectively.Moreover,the p and c that appear in the MOL can be interpreted by the B/A and the critical slip distance,respectively.Because the B/A ratio in the current model is always larger than 1,the model could become a possible candidate to explain aftershock rate commonly decay as a power law with a p-value larger than 1.Finally,the influence of the background seismicity rate r on parameters is studied;the results show that except for the apparent aftershock duration,other parameters are insensitive to r.
文摘Seismologists have found that the first arrival frequencies of P waves at different seismic stations have different widths,that is,different periods or frequencies,and they think that this phenomenon can be used to identify whether a Doppler effect is induced by earthquakes.However,the fault rupture process of a real earthquake is so complex that it is difficult to identify a frequency shift similar to the Doppler effect.A method to identify whether a Doppler effect is induced by an earthquake is proposed here.If a seismic station is in the direction of fault rupture propagation,this station could observe a Doppler effect induced by the earthquake.The Doppler effect causes the frequency of the seismic wave to shift from low frequency to high frequency,and the high frequency amplitudes become mutually superimposed.Under the combined influences of the absorption effect,geometric spreading effect and Doppler effect,the high frequency amplitude of the seismic wave will gradually become higher than the low frequency amplitude with increasing epicentral distance.If we find that the high frequency amplitude is higher than the low frequency amplitude with increasing epicentral distance in the direction of fault rupture propagation,then there is a Doppler effect.The fault that generated the Wenchuan earthquake is a reverse fault,and its horizontal rupture propagation velocity was low.To link fault rupture propagation velocity with the Doppler effect and identify the Doppler effect more easily,we decompose three-component records into two directions:the direction of fault rupture propagation and the direction perpendicular to the fault rupture propagation along the fault plane.The initial components of the two directions are processed by wavelet transform.Several seismic stations in the direction of fault rupture propagation of the Wenchuan earthquake were selected,and it was found that with increasing epicentral distance,the high frequency amplitudes of the wavelet spectra become obviously higher than the low frequency amplitudes.It can be concluded that due to the existence of the Doppler effect,high frequency amplitudes can overcome the influences of the absorption and geometric spreading effects on seismic waves in the fault rupture propagation process.
基金Supported by National Natural Science Foundation(40921062)China Geological Survey(1212011121261)~~
文摘In the research, secondary geological disasters of Wenchuan earthquake were defined and the consequences were illustrated based on geological disasters, such as collapse, landslide and debris flow, and threats of barrier lakes. In addition, the characteristics of secondary disasters were analyzed, as follows: Rupture of geological faults lays foundation in terms of geological structure; loose solids provide resources of an earthquake; abundant rainfall and large runoffs are driving forces of an earthquake; rainstorm, flood, and long-term high temperature are major inducing factors. Furthermore, suggestions on prevention of secondary disasters were proposed in terms of prevention before, at and after an earthquake. Finally, the scientific and practical significances of secondary disasters were illustrated.
基金National Natural Science Foundation of China under Grant Nos.52378335 and 52322808.
文摘A seismic-induced landslide is a common geological catastrophe that occurs in nature.The Wangjiayan landslide,which was triggered by the Wenchuan earthquake,is a typical case in point.The Wanjiayan landslide caused many casualties and resulted in enormous property loss.This study constructs a simple surficial failure model based on the upper bound approach of three-dimensional(3D)limit analysis to evaluate the slope stability of the Wangjiayan case,while a traditional two-dimensional(2D)analysis is also conducted as a reference for comparison with the results of the 3D analysis.A quasi-static calculation is used to study the effect of the earthquake in terms of horizontal ground acceleration,while a parametric study is conducted to evaluate the critical cohesion of slopes.Rather than employing a 3D analysis,using the 2D analysis yields an underestimation regarding the safety factor.In the Wangjiayan landslide,the difference in the factors of safety between the 3D and 2D analyses can reach 20%.The sliding surface morphology as determined by the 3D method is similar to actual morphology,and the parameters of both are also compared to analyze the reliability of the proposed 3D method.
文摘We developed a modified stochastic finite-fault method for estimating strong ground motions.An adjustment to the dynamic corner frequency was introduced,which accounted for the effect of the location of the subfault relative to the hypocenter and rupture propagation direction,to account for the influence of the rupture propagation direction on the subfault dynamic corner frequency.By comparing the peak ground acceleration(PGA),pseudo-absolute response spectra acceleration(PSA,damping ratio of 5%),and duration,the results of the modified and existing methods were compared,demonstrating that our proposed adjustment to the dynamic corner frequency can accurately reflect the rupture directivity effect.We applied our modified method to simulate near-field strong motions within 150 km of the 2008 MW7.9 Wenchuan earthquake rupture.Our modified method performed well over a broad period range,particularly at 0.04-4 s.The total deviations of the stochastic finite-fault method(EXSIM)and the modified EXSIM were 0.1676 and 0.1494,respectively.The modified method can effectively account for the influence of the rupture propagation direction and provide more realistic ground motion estimations for earthquake disaster mitigation.
文摘A great earthquake broke out in WenChuan. A lot of people were killed, but somany people were rescused by soldiers.Here are stories about three recused pupils.Langzhen, aged three, was rescusedby the soldiers after being buried in ruinsfor 10 hours.
基金NSFC Under Grant No. 90715038MOST of China Under Grant No. 2006BAC13B02
文摘The National Strong Motion Observation Network System (NSMONS) of China is briefly introduced in this paper. The NSMONS consists of permanent free-field stations, special observation arrays, mobile observatories and a network management system. During the Wenchuan Earthquake, over 1,400 components of acceleration records were obtained from 460 permanent free-field stations and three arrays for topographical effect and structural response observation in the network system from the main shock, and over 20,000 components of acceleration records from strong aftershocks occurred before August 1, 2008 were also obtained by permanent free-field stations of the NSMONS and 59 mobile instruments quickly deployed after the main shock. The strong motion recordings from the main shock and strong aftershocks are summarized in this paper. In the ground motion recordings, there are over 560 components with peak ground acceleration (PGA) over 10 Gal, the largest being 957.7 Gal. The largest PGA recorded during the aftershock exceeds 300 Gal.
基金National Natural Science Foundation of China Under Grant No. 90715032 and 50808105National Basic Research Program of China Under Grant No. 2007CB714203
文摘Many highway bridges were severely damaged or completely collapsed during the 2008 Wenchuan earthquake. A field investigation was carried out in the strongly affected areas and over 320 bridges were examined. Damage to some representative highway bridges is briefly described and a preliminary analysis of the probable causes of the damage is presented in this paper. The most common damage included shear-flexural failure of the pier columns, expansion joint failure, shear key failure, and girder sliding in the transversal or longitudinal directions due to weak connections between girder and bearings. Lessons learned from this earthquake are described and recommendations related to the design of curved and skewed bridges, design of bearings and devices to prevent girder collapse, and ductility of bridge piers are presented. Suggestions for future seismic design and retrofitting techniques for bridges in moderate to severe earthquake areas are also proposed.
文摘An earthquake of Ms 8 struck Wenchuan County, western Sichuan, China, on May 12^th, 2008 and resulted in long surface ruptures (〉300 km). The first-hand observations about the surface ruptures produced by the earthquake in the worst-hit areas of Yingxiu, Beichuan and Qingchuan, ascertained that the causative structure of the earthquake was in the central fault zones of the Longmenshan tectonic belt. Average co-seismic vertical displacements along the individual fault of the Yingxiu-Beiehuan rupture zone reach 2.514 m and the cumulative vertical displacements across the central and frontal Longmenshan fault belt is about 5-6 m. The surface rupture strength was reduced from north of Beichuan to Qingchuan County and shows 2-3 m dextral strike-slip component. The Wenchuan thrust-faulting earthquake is a manifestation of eastward growth of the Tibetan Plateau under the action of continuous convergence of the Indian and Eurasian continents.
基金Partially the Project 2007CB714205 of the National Basic Research Program of China
文摘The May 12, 2008 Great Wenchuan Earthquake has resulted in more than 68,858 deaths and losses in the hundreds of billions RMB as of May 30, 2008, and these numbers will undoubtedly increase as more information becomes available on the extent of the event. Immediately after the earthquake, the China Earthquake Administration (CEA) responded quickly by sending teams of experts to the affected region, eventually including over 60 staff members from the Institute of Engineering Mechanics (IEM). This paper reports preliminary information that has been gathered in the first 18 days after the event, covering seismicity, search and rescue efforts, observed ground motions, and damage and loss estimates. The extensive field investigation has revealed a number of valuable findings that could be useful in improving research in earthquake engineering in the future. Once again, this earthquake has shown that the vertical component of ground motion is as significant as horizontal ground motions in the near-source area. Finally, note that as more information is gathered, the numbers reported in this paper will need to be adjusted accordingly.