A large number of buildings were seriously damaged or collapsed in the "5.12" Wenchuan earthquake. Based on field surveys and studies of damage to different types of buildings, seismic design codes have been...A large number of buildings were seriously damaged or collapsed in the "5.12" Wenchuan earthquake. Based on field surveys and studies of damage to different types of buildings, seismic design codes have been updated. This paper briefly summarizes some of the major revisions that have been incorporated into the "Standard for classification of seismic protection of building constructions GB50223-2008" and "Code for Seismic Design of Buildings GB50011-2001." The definition of seismic fortification class for buildings has been revisited, and as a result, the seismic classifications for schools, hospitals and other buildings that hold large populations such as evacuation shelters and information centers have been upgraded in the GB50223-2008 Code. The main aspects of the revised GB50011-2001 code include: (a) modification of the seismic intensity specified for the Provinces of Sichuan, Shanxi and Gansu; (b) basic conceptual design for retaining walls and building foundations in mountainous areas; (c) regularity of building configuration; (d) integration of masonry structures and precast RC floors; (e) requirements for calculating and detailing stair shafts; and (f) limiting the use of single-bay RC frame structures. Some significant examples of damage in the epicenter areas are provided as a reference in the discussion on the consequences of collapse, the importance of duplicate structural systems, and the integration of RC and masonry structures.展开更多
An investigation of girder bridges on National Highway 213 and the Doujiangyan-Wenchuan expressway after the Wenchuan earthquake showed that typical types of damage included: span collapses due to unseating at expans...An investigation of girder bridges on National Highway 213 and the Doujiangyan-Wenchuan expressway after the Wenchuan earthquake showed that typical types of damage included: span collapses due to unseating at expansion joints; shear key failure; and damage of the expansion joint due to the slide-induced large relative displacement between the bottom of the girder and the top of the laminated-rubber bearing. This slide, however, can actually act as a form of isolation for the substructure, and as a result, the piers and foundation of most of the bridges on state route 213 suffered minor damage. The exception was the Baihua Bridge, which suffered severe damage. Corresponding seismic design recommendations are presented based on this investigation.展开更多
Many different types of buildings were severely damaged or collapsed during the May 12, 2008 Great Wenchuan Earthquake. Based on survey data collected in regions that were subjected to moderate to severe earthquake in...Many different types of buildings were severely damaged or collapsed during the May 12, 2008 Great Wenchuan Earthquake. Based on survey data collected in regions that were subjected to moderate to severe earthquake intensities, a comparison between the observed building damage, and the three earthquake performance objectives and seismic conceptual design principles specified by the national "Code for Seismic Design of Buildings GB50011-2001," was carried out. Actual damage and predicted damage for a given earthquake level for different types of structures is compared. Discussions on seismic conceptual design principles, with respect to multiple defense lines, strong column-weak beam, link beam of shear walls, ductility detailing of masonry structures, exits and staircases, and nonstructural elements, etc. are carried out. Suggestions for improving the seismic design of structures are also proposed. It is concluded that the seismic performance objectives for three earthquake levels, i.e., "no failure under minor earthquake level, ""repairable damage under moderate earthquake level" and "no collapse under major earthquake level" can be achieved if seismic design principles are carried out by strictly following the code requirements and ensuring construction quality.展开更多
With the development and implementation of performance-based earthquake engineering,harmonization of performance levels between structural and nonstructural components becomes vital. Even if the structural components ...With the development and implementation of performance-based earthquake engineering,harmonization of performance levels between structural and nonstructural components becomes vital. Even if the structural components of a building achieve a continuous or immediate occupancy performance level after a seismic event,failure of architectural,mechanical or electrical components can lower the performance level of the entire building system. This reduction in performance caused by the vulnerability of nonstructural components has been observed during recent earthquakes worldwide. Moreover,nonstructural damage has limited the functionality of critical facilities,such as hospitals,following major seismic events. The investment in nonstructural components and building contents is far greater than that of structural components and framing. Therefore,it is not surprising that in many past earthquakes,losses from damage to nonstructural components have exceeded losses from structural damage. Furthermore,the failure of nonstructural components can become a safety hazard or can hamper the safe movement of occupants evacuating buildings,or of rescue workers entering buildings. In comparison to structural components and systems,there is relatively limited information on the seismic design of nonstructural components. Basic research work in this area has been sparse,and the available codes and guidelines are usually,for the most part,based on past experiences,engineering judgment and intuition,rather than on objective experimental and analytical results. Often,design engineers are forced to start almost from square one after each earthquake event: to observe what went wrong and to try to prevent repetitions. This is a consequence of the empirical nature of current seismic regulations and guidelines for nonstructural components. This review paper summarizes current knowledge on the seismic design and analysis of nonstructural building components,identifying major knowledge gaps that will need to be filled by future research. Furthermore,considering recent trends in earthquake engineering,the paper explores how performance-based seismic design might be conceived for nonstructural components,drawing on recent developments made in the field of seismic design and hinting at the specific considerations required for nonstructural components.展开更多
Many highway bridges were severely damaged or completely collapsed during the 2008 Wenchuan earthquake. A field investigation was carried out in the strongly affected areas and over 320 bridges were examined. Damage t...Many highway bridges were severely damaged or completely collapsed during the 2008 Wenchuan earthquake. A field investigation was carried out in the strongly affected areas and over 320 bridges were examined. Damage to some representative highway bridges is briefly described and a preliminary analysis of the probable causes of the damage is presented in this paper. The most common damage included shear-flexural failure of the pier columns, expansion joint failure, shear key failure, and girder sliding in the transversal or longitudinal directions due to weak connections between girder and bearings. Lessons learned from this earthquake are described and recommendations related to the design of curved and skewed bridges, design of bearings and devices to prevent girder collapse, and ductility of bridge piers are presented. Suggestions for future seismic design and retrofitting techniques for bridges in moderate to severe earthquake areas are also proposed.展开更多
Several reinforcing schemes are illustrated that are based on the loading characteristics of typical country masonry school buildings with sparsely spaced transversal walls and large depth. From the seismic damage obs...Several reinforcing schemes are illustrated that are based on the loading characteristics of typical country masonry school buildings with sparsely spaced transversal walls and large depth. From the seismic damage observed following the Wenchuan Earthquake, the effects of reinforcing schemes, tie-columns and tie-beams on the seismic resistance of masonry buildings are analyzed. The concept of improving the ductility of these types of buildings is presented. Finally, some suggestions are proposed for the design of masonry buildings with sparsely spaced transversal walls and large depth.展开更多
As a result of rapid economic growth and urbanization in the past two decades,many tall buildings have been constructed in China Mainland,offering researchers and practitioners an excellent opportunity for research an...As a result of rapid economic growth and urbanization in the past two decades,many tall buildings have been constructed in China Mainland,offering researchers and practitioners an excellent opportunity for research and practice in the field of structural engineering. This paper reviews progress by researchers throughout China Mainland on the seismic research of tall buildings,focusing on three major topics that impact the seismic performance of tall buildings. These are:(1) new types of steel-concrete composite structural members such as steel-concrete composite shear walls and columns,(2) earthquake resilient shear wall structures such as shear walls with replaceable structural components,self-centering shear walls and rocking walls,and(3) performance-based seismic design,including seismic performance index,performance level and design method. The paper concludes by presenting future research needs and directions in this field.展开更多
The outline and typical characteristics of damages to building in Jiangyou city and Anxian county (intensity Ⅷ), Mianyang city and Deyang city (intensity Ⅶ) are introduced in the paper. The damage ratios, based ...The outline and typical characteristics of damages to building in Jiangyou city and Anxian county (intensity Ⅷ), Mianyang city and Deyang city (intensity Ⅶ) are introduced in the paper. The damage ratios, based on the sample statistics of multi-story brick buildings together with multi-story brick buildings with RC frame at first story (BBF), are presented. Then some typical damages, such as horizontal cricks of brick masonry buildings, X-shaped cricks on the walls under windows, the damages to columns, beams and infill walls of frame buildings and the damage to half circle-shaped masonry walls, are discussed.展开更多
A field damage survey of 1,005 buildings damaged by the Wenchuan Earthquake in Dujiangyan City was carried out and the resulting data was analyzed using the statistical method. It is shown that buildings that were sei...A field damage survey of 1,005 buildings damaged by the Wenchuan Earthquake in Dujiangyan City was carried out and the resulting data was analyzed using the statistical method. It is shown that buildings that were seismically designed achieved the desired seismic fortification target; they sustained less damage than the non-seismically designed buildings. Among the seismically designed buildings investigated, RC frame buildings performed the best in terms of seismic resistance. Masonry buildings with a ground story of RC frame structure were the second best, and masonry buildings performed the worst. Considering building height, multistory buildings sustained more severe damage than high-rise buildings and 2- and 3-story buildings. Compared to residential buildings, public buildings, such as schools and hospitals, suffered more severe damage.展开更多
Recent developments in earthquake engineering indicate that probabilistic seismic risk analysis (PSRA) is becoming increasingly useful for the evaluation of structural per-formance in accordance with building codes. I...Recent developments in earthquake engineering indicate that probabilistic seismic risk analysis (PSRA) is becoming increasingly useful for the evaluation of structural per-formance in accordance with building codes. In recent years, the field of seismic resis-tance design has been undergoing a critical shift in focus from strength to performance. However, current earthquake resistant design procedures do not relate building performance to probability. A lack of sufficient empirical data has highlighted gaps in this research. This study integrated results from the analysis of structural fragility and seismic hazard in Taiwan to perform PSRA to examine the effectiveness of building code in mitigating the risks associated with earthquakes. Factors taken into account included the effect of construction materials, building height, and building age. The results of this study show that the probability of exceeding damage associated with the CP level in buildings of light steel, pre-cast concrete, and masonry, exceeds 2%. These buildings fail to meet the performance objectives outlined in FEMA-273.展开更多
Rapid urbanization has resulted in increased demand for tall buildings in many large and medium-sized cities around the world.Current code-based standards for seismic design are primarily aimed at minimizing life-safe...Rapid urbanization has resulted in increased demand for tall buildings in many large and medium-sized cities around the world.Current code-based standards for seismic design are primarily aimed at minimizing life-safety risks under major earthquakes.While reinforced concrete(RC)high-rise buildings designed following current code requirements are expected to achieve collapse-prevention,the contribution of higher modes of vibrations to the dynamic response of these structures can produce seismic demands significantly larger than those obtained from prescriptive code-based procedures,causing unexpectedly higher structural and non-structural damage to these buildings.These imply considerable costs associated with the loss of residences and business operations as well as the post-earthquake recovery of cities.This paper presents a concise review of the current state-of-the-art and state of research pertaining to the understanding,estimation and mitigation of higher-mode effects on the seismic response of tall and slender RC structures.The paper is organized into four main foci:(1)analytical studies on understanding and quantifying higher-mode effects,(2)available experimental work on this topic,(3)advances in code practices in accounting for higher-mode effects in seismic design of RC tall buildings,and(4)recent developments in innovative systems intended to mitigate higher-mode effects in RC tall buildings.The paper concludes by briefly summarizing future challenges facing the construction of earthquake-resilient RC tall buildings that are essential in building resilient cities of the future.展开更多
基金National Natural Science Foundation of China Under Grant No.50439010 NSFC and Korea Science and Engineering Foundation Under Grant No.50811140341
文摘A large number of buildings were seriously damaged or collapsed in the "5.12" Wenchuan earthquake. Based on field surveys and studies of damage to different types of buildings, seismic design codes have been updated. This paper briefly summarizes some of the major revisions that have been incorporated into the "Standard for classification of seismic protection of building constructions GB50223-2008" and "Code for Seismic Design of Buildings GB50011-2001." The definition of seismic fortification class for buildings has been revisited, and as a result, the seismic classifications for schools, hospitals and other buildings that hold large populations such as evacuation shelters and information centers have been upgraded in the GB50223-2008 Code. The main aspects of the revised GB50011-2001 code include: (a) modification of the seismic intensity specified for the Provinces of Sichuan, Shanxi and Gansu; (b) basic conceptual design for retaining walls and building foundations in mountainous areas; (c) regularity of building configuration; (d) integration of masonry structures and precast RC floors; (e) requirements for calculating and detailing stair shafts; and (f) limiting the use of single-bay RC frame structures. Some significant examples of damage in the epicenter areas are provided as a reference in the discussion on the consequences of collapse, the importance of duplicate structural systems, and the integration of RC and masonry structures.
基金National Natural Science Foundation Under Grant No.50578118
文摘An investigation of girder bridges on National Highway 213 and the Doujiangyan-Wenchuan expressway after the Wenchuan earthquake showed that typical types of damage included: span collapses due to unseating at expansion joints; shear key failure; and damage of the expansion joint due to the slide-induced large relative displacement between the bottom of the girder and the top of the laminated-rubber bearing. This slide, however, can actually act as a form of isolation for the substructure, and as a result, the piers and foundation of most of the bridges on state route 213 suffered minor damage. The exception was the Baihua Bridge, which suffered severe damage. Corresponding seismic design recommendations are presented based on this investigation.
文摘Many different types of buildings were severely damaged or collapsed during the May 12, 2008 Great Wenchuan Earthquake. Based on survey data collected in regions that were subjected to moderate to severe earthquake intensities, a comparison between the observed building damage, and the three earthquake performance objectives and seismic conceptual design principles specified by the national "Code for Seismic Design of Buildings GB50011-2001," was carried out. Actual damage and predicted damage for a given earthquake level for different types of structures is compared. Discussions on seismic conceptual design principles, with respect to multiple defense lines, strong column-weak beam, link beam of shear walls, ductility detailing of masonry structures, exits and staircases, and nonstructural elements, etc. are carried out. Suggestions for improving the seismic design of structures are also proposed. It is concluded that the seismic performance objectives for three earthquake levels, i.e., "no failure under minor earthquake level, ""repairable damage under moderate earthquake level" and "no collapse under major earthquake level" can be achieved if seismic design principles are carried out by strictly following the code requirements and ensuring construction quality.
文摘With the development and implementation of performance-based earthquake engineering,harmonization of performance levels between structural and nonstructural components becomes vital. Even if the structural components of a building achieve a continuous or immediate occupancy performance level after a seismic event,failure of architectural,mechanical or electrical components can lower the performance level of the entire building system. This reduction in performance caused by the vulnerability of nonstructural components has been observed during recent earthquakes worldwide. Moreover,nonstructural damage has limited the functionality of critical facilities,such as hospitals,following major seismic events. The investment in nonstructural components and building contents is far greater than that of structural components and framing. Therefore,it is not surprising that in many past earthquakes,losses from damage to nonstructural components have exceeded losses from structural damage. Furthermore,the failure of nonstructural components can become a safety hazard or can hamper the safe movement of occupants evacuating buildings,or of rescue workers entering buildings. In comparison to structural components and systems,there is relatively limited information on the seismic design of nonstructural components. Basic research work in this area has been sparse,and the available codes and guidelines are usually,for the most part,based on past experiences,engineering judgment and intuition,rather than on objective experimental and analytical results. Often,design engineers are forced to start almost from square one after each earthquake event: to observe what went wrong and to try to prevent repetitions. This is a consequence of the empirical nature of current seismic regulations and guidelines for nonstructural components. This review paper summarizes current knowledge on the seismic design and analysis of nonstructural building components,identifying major knowledge gaps that will need to be filled by future research. Furthermore,considering recent trends in earthquake engineering,the paper explores how performance-based seismic design might be conceived for nonstructural components,drawing on recent developments made in the field of seismic design and hinting at the specific considerations required for nonstructural components.
基金National Natural Science Foundation of China Under Grant No. 90715032 and 50808105National Basic Research Program of China Under Grant No. 2007CB714203
文摘Many highway bridges were severely damaged or completely collapsed during the 2008 Wenchuan earthquake. A field investigation was carried out in the strongly affected areas and over 320 bridges were examined. Damage to some representative highway bridges is briefly described and a preliminary analysis of the probable causes of the damage is presented in this paper. The most common damage included shear-flexural failure of the pier columns, expansion joint failure, shear key failure, and girder sliding in the transversal or longitudinal directions due to weak connections between girder and bearings. Lessons learned from this earthquake are described and recommendations related to the design of curved and skewed bridges, design of bearings and devices to prevent girder collapse, and ductility of bridge piers are presented. Suggestions for future seismic design and retrofitting techniques for bridges in moderate to severe earthquake areas are also proposed.
文摘Several reinforcing schemes are illustrated that are based on the loading characteristics of typical country masonry school buildings with sparsely spaced transversal walls and large depth. From the seismic damage observed following the Wenchuan Earthquake, the effects of reinforcing schemes, tie-columns and tie-beams on the seismic resistance of masonry buildings are analyzed. The concept of improving the ductility of these types of buildings is presented. Finally, some suggestions are proposed for the design of masonry buildings with sparsely spaced transversal walls and large depth.
基金National Natural Science Foundation Project under Grant No.91315301-4National Key Technology R&D Program under Grant No.2012BAJ13B02
文摘As a result of rapid economic growth and urbanization in the past two decades,many tall buildings have been constructed in China Mainland,offering researchers and practitioners an excellent opportunity for research and practice in the field of structural engineering. This paper reviews progress by researchers throughout China Mainland on the seismic research of tall buildings,focusing on three major topics that impact the seismic performance of tall buildings. These are:(1) new types of steel-concrete composite structural members such as steel-concrete composite shear walls and columns,(2) earthquake resilient shear wall structures such as shear walls with replaceable structural components,self-centering shear walls and rocking walls,and(3) performance-based seismic design,including seismic performance index,performance level and design method. The paper concludes by presenting future research needs and directions in this field.
基金supported by Public Service Research Project of Quality Inspection Field under Grant No. 10-110 Public Service Research Project of Earthquake Field under Grant No. 200708005.
文摘The outline and typical characteristics of damages to building in Jiangyou city and Anxian county (intensity Ⅷ), Mianyang city and Deyang city (intensity Ⅶ) are introduced in the paper. The damage ratios, based on the sample statistics of multi-story brick buildings together with multi-story brick buildings with RC frame at first story (BBF), are presented. Then some typical damages, such as horizontal cricks of brick masonry buildings, X-shaped cricks on the walls under windows, the damages to columns, beams and infill walls of frame buildings and the damage to half circle-shaped masonry walls, are discussed.
文摘A field damage survey of 1,005 buildings damaged by the Wenchuan Earthquake in Dujiangyan City was carried out and the resulting data was analyzed using the statistical method. It is shown that buildings that were seismically designed achieved the desired seismic fortification target; they sustained less damage than the non-seismically designed buildings. Among the seismically designed buildings investigated, RC frame buildings performed the best in terms of seismic resistance. Masonry buildings with a ground story of RC frame structure were the second best, and masonry buildings performed the worst. Considering building height, multistory buildings sustained more severe damage than high-rise buildings and 2- and 3-story buildings. Compared to residential buildings, public buildings, such as schools and hospitals, suffered more severe damage.
文摘Recent developments in earthquake engineering indicate that probabilistic seismic risk analysis (PSRA) is becoming increasingly useful for the evaluation of structural per-formance in accordance with building codes. In recent years, the field of seismic resis-tance design has been undergoing a critical shift in focus from strength to performance. However, current earthquake resistant design procedures do not relate building performance to probability. A lack of sufficient empirical data has highlighted gaps in this research. This study integrated results from the analysis of structural fragility and seismic hazard in Taiwan to perform PSRA to examine the effectiveness of building code in mitigating the risks associated with earthquakes. Factors taken into account included the effect of construction materials, building height, and building age. The results of this study show that the probability of exceeding damage associated with the CP level in buildings of light steel, pre-cast concrete, and masonry, exceeds 2%. These buildings fail to meet the performance objectives outlined in FEMA-273.
基金the financial support of the Nat-ural Sciences and Engineering Research Council of Canada(NSERC).
文摘Rapid urbanization has resulted in increased demand for tall buildings in many large and medium-sized cities around the world.Current code-based standards for seismic design are primarily aimed at minimizing life-safety risks under major earthquakes.While reinforced concrete(RC)high-rise buildings designed following current code requirements are expected to achieve collapse-prevention,the contribution of higher modes of vibrations to the dynamic response of these structures can produce seismic demands significantly larger than those obtained from prescriptive code-based procedures,causing unexpectedly higher structural and non-structural damage to these buildings.These imply considerable costs associated with the loss of residences and business operations as well as the post-earthquake recovery of cities.This paper presents a concise review of the current state-of-the-art and state of research pertaining to the understanding,estimation and mitigation of higher-mode effects on the seismic response of tall and slender RC structures.The paper is organized into four main foci:(1)analytical studies on understanding and quantifying higher-mode effects,(2)available experimental work on this topic,(3)advances in code practices in accounting for higher-mode effects in seismic design of RC tall buildings,and(4)recent developments in innovative systems intended to mitigate higher-mode effects in RC tall buildings.The paper concludes by briefly summarizing future challenges facing the construction of earthquake-resilient RC tall buildings that are essential in building resilient cities of the future.