In this study we performed a classical spectrum analysis of seismic waveforms recorded at far field stations of the great MW7.9 Wenchuan earthquake to observe the shifts of the corner frequency with azimuth due to the...In this study we performed a classical spectrum analysis of seismic waveforms recorded at far field stations of the great MW7.9 Wenchuan earthquake to observe the shifts of the corner frequency with azimuth due to the Doppler effect.Our results show that this damaging great earthquake had a dominating rupture propagation direction of 64.0°.The equivalent radius of the fault rupture surface was estimated to be 33 km,yielding the rupture area of about 3 500 km2.Thus the length of the rupture fault surface is about 230 km if the depth(or width) extent is 15 km.The computer program developed in this study can quickly provide the information about the source of a future large(damaging) earthquake,which could be very useful for predicting aftershocks and planning the rescue operations.展开更多
The May 12, 2008, Ms8.0 Wenchuan earthquake was the outcome of a recent movement of an active intra-continental thrust fault zone. The seismogenic fault of this earthquake underwent oblique-slip faulting along the cen...The May 12, 2008, Ms8.0 Wenchuan earthquake was the outcome of a recent movement of an active intra-continental thrust fault zone. The seismogenic fault of this earthquake underwent oblique-slip faulting along the central fault and pure thrust faulting along the range-front fault of the Longmenshan fault zone. The former had a steep dip and large vertical displacement, and the latter had a gentle dip and little vertical displacement. The fault zone consisted of compressive double fault ramps rup turing with right-lateral strike-slip components resulting from strain partitioning of a deep oblique slip fault in the brittle zone of the upper crust. The kinematic pattern and rupture mechanisms are complex for the seismogenic fault, as indicated by the geometric pattern of its surface ruptures, the coseismic displacement distribution and focal mechanisms of the main shock and aftershocks. As a tear fault, the NW-trending, left-lateral, strike-slip Xiaoyudong fault zone has accommodated NE-trending displacements with different shortening amounts. However, because of intense compression on the southwestern segment of the seismogenic fault, the left-lateral, strike-slip Xiaoyudong fault also carries a clear compression component. Normal faulting with a strike-slip component controls the formation of a fault-trough along the central fault, which is characterized by thrusting with a strike-slip component and strike-slip with thrusting. The fault-troughs are the product of the interaction of slip and grav ity on the seismogenic fault under specific geological and geomorphic conditions. Gravitational force exaggerated the vertical component of fault displacement, which by no means represents the actual maximum vertical displacement of the seismogenic fault.展开更多
This article is to review results from scientific drilling and fault-zone trapped waves (FZTWs) at the south Longman-Shan fault (LSF) zone that ruptured in the 2008 May 12 M8 Wenchuan earthquake in Sichuan,China.I...This article is to review results from scientific drilling and fault-zone trapped waves (FZTWs) at the south Longman-Shan fault (LSF) zone that ruptured in the 2008 May 12 M8 Wenchuan earthquake in Sichuan,China.Immediately after the mainshock,two Wenchuan Fault Scientific Drilling (WFSD) boreholes were drilled at WFSD-1 and WFSD-2 sites approximately 400 m and 1 km west of the surface rupture along the Yinxiu-Beichuan fault (YBF),the middle fault strand of the south LSF zone.Two boreholes met the principal slip of Wenchuan earthquake along the YBF at depths of 589-m and 1230-m,respectively.The slip is accompanied with a 100-200-m-wide zone consisting of fault gouge,breccia,cataclasite and fractures.Close to WFSD-1 site,the nearly-vertical slip of ~4.3-m with a 190-m wide zone of highly fractured rocks restricted to the hanging wall of the YBF was found at the ground surface after the Wenchuan earthquake.A dense linear seismic array was deployed across the surface rupture at this venue to record FZTWs generated by aftershocks.Observations and 3-D finite-difference simulations of FZTWs recorded at this cross-fault array and network stations close to the YBF show a distinct low-velocity zone composed by severely damaged rocks along the south LSF at seismogenic depths.The zone is several hundred meters wide along the principal slip,within which seismic velocities are reduced by ~30-55% from wall-rock velocities and with the maximum velocity reduction in the ~200-m-wide rupture core zone at shallow depth.The FZTW-inferred geometry and physical properties of the south LSF rupture zone at shallow depth are in general consistent with the results from petrological and structural analyses of cores and well log at WFSD boreholes.We interpret this remarkable low-velocity zone as being a break-down zone during dynamic rupture in the 2008 M8 earthquake.We examined the FZTWS generated by similar earthquakes before and after the 2008 mainshock and observed that seismic velocities within fault core zone was reduced by ~10% due to severe damage of fault rocks during the M8 mainshock.Scientific drilling and locations of aftershocks generating prominent FZTWs also indicate rupture bifurcation along the YBF and the Anxian-Guangxian fault (AGF),two strands of the south LSF at shallow depth.A combination of seismic,petrologic and geologic study at the south LSF leads to further understand the relationship between the fault-zone structure and rupture dynamics,and the amplification of ground shaking strength along the low-velocity fault zone due to its waveguide effect.展开更多
The rupture process of the May 12, 2008 Ms8.0 Wenchuan earthquake was very complex. To study the rupture zones generated by this earthquake, four dense temporary seismic arrays across the two surface breaking traces o...The rupture process of the May 12, 2008 Ms8.0 Wenchuan earthquake was very complex. To study the rupture zones generated by this earthquake, four dense temporary seismic arrays across the two surface breaking traces of the main-shock were deployed in July and recorded a great amount of aftershocks. This paper focuses on the data interpretation of two arrays across the central main fault, the northern array line 1 and southern array line 3. The fault zone trapped waves recorded by the two arrays were used to study the structure of the central main fault and the difference between the northern and southern portions. The results show that the widths of the rupture zone are about 170-200 m and 200-230 m for northern and southern portions respectively. And the corresponding dip angles are 80° and 70°. The seismic velocity inside the fracture zone is about one half of the host rock. By comparison, the northern portion of the rupture zone is slightly narrower and steeper than the southern portion. Besides these differences, one more interesting and important difference is the positions of the rupture zone with respect to surface breaking traces. At the northern portion, the rupture zone is centered at the surface breaking trace, while at the southern portion it is not but is shifted to the northwest. This difference reflects the difference of rupture behaviors between two portions of the central main fault. The width of the rupture zone is smaller than that of MS.1 Kunlun earthquake though these two earthquakes have almost the same magnitudes. Multiple ruptures may be one factor to cause the narrower rupture zone.展开更多
A three-dimensional local-scale P-velocity model down to 25 km depth around the main shock epicenter region was constructed using 83821 event-to-receiver seismic rays from 5856 aftershocks recorded by a newly deployed...A three-dimensional local-scale P-velocity model down to 25 km depth around the main shock epicenter region was constructed using 83821 event-to-receiver seismic rays from 5856 aftershocks recorded by a newly deployed temporary seismic network. Checkerboard tests show that our tomographic model has lateral and vertical resolution of -2 km. The high-resolution P-velocity model revealed interesting structures in the seismogenic layer: (1) The Guanxian-Anxian fault, Yingxiu-Beichuan fault and Wenchuan-Maoxian fault of the Longmen Shan fault zone are well delineated by sharp upper crustal velocity changes; (2) The Pengguan massif has generally higher velocity than its surrounding areas, and may extend down to at least -10 km from the surface; (3) A sharp lateral velocity variation beneath the Wenchuan-Maoxian fault may indicate that the Pengguan massif's western boundary and/or the Wenchuan-Maoxian fault is vertical, and the hypocenter of the Wenchuan earthquake possibly located at the conjunction point of the NW dipping Yingxiu-Beichuan and Guanxian-Anxian faults, and vertical Wenchuan-Maoxian fault; (4) Vicinity along the Yingxiu- Beichuan fault is characterized by very low velocity and low seismicity at shallow depths, possibly due to high content of porosity and fractures; (5) Two blocks of low-velocity anomaly are respectively imaged in the hanging wall and foot wall of the Guanxian-Anxian fault with a -7 km offset with -5 km vertical component.展开更多
On 25 April, 2015, an Mw7.9 earthquake occurred in Nepal, which caused great economic loss and casualties. However, almost no surface ruptures were observed. Therefore, in order to interpret the phenomenon, we study t...On 25 April, 2015, an Mw7.9 earthquake occurred in Nepal, which caused great economic loss and casualties. However, almost no surface ruptures were observed. Therefore, in order to interpret the phenomenon, we study the rupture process of the earthquake to seek answers. Inversion of teleseismic body-wave data is applied to estimate the rupture process of the 2015 Nepal earthquake. To obtain stable solutions, smoothing and non-negative constraints are introduced. 48 teleseismic stations with good coverage are chosen. Finite fault model is established with length and width of 195 km and 150 km, and we set the initial seismic source parameters referring to CMT solutions. Inversion results indicate that the focal mechanism of this earthquake is a thrust fault type, and the strike, dip and rake angle are in accordance with CMT results. The seismic moment is 0.9195 ×10^(21)Nm(Mw7.9), and source duration is about 70s. The rupture nucleated near the hypocenter and then propagated along the dip direction to the southeast, and the maximum slip amounts to 5.2 m. Uncertainties on the amount of slip retrieved by different inversion methods still exist, the overall characteristics are inconsistent. The lack of shallow slip during the 2015 Gorkha earthquake implies future seismic hazard and this region should be paid more attention to.展开更多
The great M_S8.0 Wenchuan earthquake on May 12,2008 was generated by abrupt faulting in the Yingxiu-Beichuan fault along the Longmenshan fault zone. The earthquake not only produced surface ruptures along the Yingxiu-...The great M_S8.0 Wenchuan earthquake on May 12,2008 was generated by abrupt faulting in the Yingxiu-Beichuan fault along the Longmenshan fault zone. The earthquake not only produced surface ruptures along the Yingxiu-Beichuan and Guanxian-Jiangyou faults,but also surface ruptures,arching of highway pavement,sand-boils and waterspouts in various degrees in areas such as Shifang and Mianzhu on the Chengdu Plain. To understand the shallow geological structures under the surface rupture zone,a 6350m long high-resolution shallow seismic reflection profile in near-EW direction was performed. This profile is located at Shigu town,Shifang city,where a suspected earthquake surface rupture zone was discovered. In this study,a group interval of 3m,shotpoint interval of 18m,and a 300-channel 25-fold observation system were used. In consideration of both near-surface reflections and dipping interface imaging,we adopted the split-spread geometry and asymmetrical zero-offset receiving technique. To better suppress random-noise and raise the signal-to-noise ratio of seismic data,30 times vertical stacking of vibrator signals was made for each common-shot gather after correlation of individual records. By using the above work method and spread geometry,we obtained high-resolution images of structures in the depth range of 15m~800m after data processing. The result shows the existence of buried thrust faults thrusting to the plain area and back-thrust faults under the surface rupture zone. It also shows that the activity of the buried thrust faults may be the main cause for folding and deformation in near-surface strata and coseismic surface rupturing.展开更多
The M_S8.0 Wenchuan earthquake in Sichuan caused heavy casualties and serious economic loss because of damage to engineering structures in high earthquake intensity regions. Earthquake intensity, especially in the nea...The M_S8.0 Wenchuan earthquake in Sichuan caused heavy casualties and serious economic loss because of damage to engineering structures in high earthquake intensity regions. Earthquake intensity, especially in the near source region, as a macroscopic description of distribution of strong ground motions certain correlations with the earthquake source process, such as rupture directivity and the hanging-wall effect of the near-fault ground motions of this earthquake. In this article some qualitative analyses are carried out. The conclusion of this study may be useful for emergence response and rescue after earthquakes, when the strong ground motion recordings and the intensity distribution are not available immediately.展开更多
The opinions of two papers carried in the journal "Seismology and Geology" are discussed in the paper.One is that the Tangshan fault is a high-angle,west-dipping and thrust with strike-slip fault.The other i...The opinions of two papers carried in the journal "Seismology and Geology" are discussed in the paper.One is that the Tangshan fault is a high-angle,west-dipping and thrust with strike-slip fault.The other is that the Fuzhuang-Xihe fault distributed on the east side of Tangshan city is the seismogenic fault that caused the Tangshan earthquake.For the former opinion,it needs to explain the relationship between the active style of the thrust Tangshan fault and the formation genesis of a Quaternary depression along the west side of Tangshan city.For the latter opinion,if the Fuzhuang-Xihe fault is the seismogenic fault of the Tangshan earthquake,it needs to explain the genesis relationship between this west-dip slip fault zone and the strike-slip surface fissure zone that extends through Tangshan city.And it needs more evidence exclude the possibility that the surface rupture belongs to the rupturing of a secondary structure.This paper suggests doing more work on the active fault that controls the Caobo Quaternary depression.展开更多
Focal mechanism and dynamic rupture process of the Wenchaun Ms8.0 earthquake in Sichuan province on 12 May 2008 were obtained by inverting long period seismic data from the Global Seismic Network (GSN), and characteri...Focal mechanism and dynamic rupture process of the Wenchaun Ms8.0 earthquake in Sichuan province on 12 May 2008 were obtained by inverting long period seismic data from the Global Seismic Network (GSN), and characteristics of the co-seismic displacement field near the fault were quantitatively ana-lyzed based on the inverted results to investigate the mechanism causing disaster. A finite fault model with given focal mechanism and vertical components of the long period P-waves from 21 stations with evenly azimuthal coverage were adopted in the inversion. From the inverted results as well as after-shock distribution, the causative fault of the great Wenchuan earthquake was confirmed to be a fault of strike 225°/dip 39°/rake 120°, indicating that the earthquake was mainly a thrust event with right-lateral strike-slip component. The released scalar seismic moment was estimated to be about 9.4×1020―2.0×1021 Nm, yielding moment magnitude of Mw7.9―8.1. The great Wenchuan earthquake occurred on a fault more than 300 km long, and had a complicated rupture process of about 90 s duration time. The slip distribution was highly inhomogeneous with the average slip of about 2.4 m. Four slip-patches broke the ground surface. Two of them were underneath the regions of Wenchuan-Yingxiu and Beichuan, respectively, with the first being around the hypocenter (rupture initiation point), where the largest slip was about 7.3 m, and the second being underneath Beichuan and extending to Pingwu, where the largest slip was about 5.6 m. The other two slip-patches had smaller sizes, one having the maximum slip of 1.8 m and lying underneath the north of Kangding, and the other having the maximum slip of 0.7 m and lying underneath the northeast of Qingchuan. Average and maximum stress drops over the whole fault plane were estimated to be 18 MPa and 53 MPa, respectively. In addition, the co-seismic displacement field near the fault was analyzed. The results indicate that the features of the co-seismic displacement field were coincident with those of the intensity distribution in the meizo-seismal area, implying that the large-scale, large-amplitude and surface-broken thrust dislocation should be responsible for the serious disaster in the near fault area.展开更多
Recent geodetic and seismological observations of two major earthquakes in southeastern Türkiye in February 2023 have revealed complex rupture initiation,propagation,and segmentation along the East Anatolian Faul...Recent geodetic and seismological observations of two major earthquakes in southeastern Türkiye in February 2023 have revealed complex rupture initiation,propagation,and segmentation along the East Anatolian Fault Zone(EAFZ)and surrounding regions.However,the role of upper crust structures along the EAFZ in determining the diverse rupture processes of this earthquake doublet remains unclear.To further investigate this,we employed double-difference location and seismic tomography techniques to determine high-resolution seismic velocities(V_(P),V_(S))and Poisson’s ratio(σ)structures using a multiparameter joint tomographic algorithm.Our dataset includes 100,833 high-quality source-receiver travel-time pairs of P-and Swaves.We find that the unique rupture processes of this earthquake doublet were primarily influenced by contrasting crustal seismic structures and localized geological settings.The M_(w)7.8 mainshock was initiated within a transitional edge zone characterized by a rigid part(asperity)of the seismogenic zone with sharp contrast variations in rock strength ranging from low to high along the EAFZ.In comparison,the M_(w)7.6 rupture originated in a ductile belt featuring fluid saturation with low-VP,low-VS,and high-σvalues that extended parallel to the Cardak Fault.The pronounced contrast structures observed along the former rupture can be attributed to the oblique collision system between the weakened section of the east Anatolian plateau and the brittle Arabian platform,while the latter rupture was initiated within the ductile structure associated with fluid intrusion caused by the northward subduction of the Cyprus slab and subsequent detachment.Furthermore,the occurrence of the first earthquake(E1)serves to alleviate shear stress on the second earthquake(E2)fault,potentially impeding the initiation of an E2 rupture.On the contrary,this event also significantly reduces the normal stress acting on the E2 fault due to a double left-lateral strike-slip system within a triangular region.This reduction not only results in a decrease of fault friction force and an increase in rock porosity but also induces lower strain drops and the redistribution of Coulomb stress,thereby contributing to the initiation of the E2 event.The proposed rupture pattern exceeds the conventional model that governs individual earthquake ruptures,offering new insights for mitigating potential seismic disasters in Türkiye.The lessons learned from this doublet event can contribute to reevaluating the ongoing risk of damaging earthquakes in China’s South-North Seismic Zone or other regions worldwide with comparable geological conditions.展开更多
The M8.0 Wenchuan earthquake occurred on the Longmenshan fault zone. Based on field investigation of the surface rupture and focal mechanism study of the aftershocks, we discuss the geological relationship of the main...The M8.0 Wenchuan earthquake occurred on the Longmenshan fault zone. Based on field investigation of the surface rupture and focal mechanism study of the aftershocks, we discuss the geological relationship of the main, secondary and triggered ruptures. The main rupture is about 200km long and can be divided into the south part and the north part. The south part consists of two parallel fault zones characterized by reverse faulting, with several parallel secondary ruptures on the hanging wall of the main fault, and the north part is a single main fault zone characterized by lateral strike-slip and reverse faulting. Compared to a 300km long aftershock distribution, the surface rupture only occupies 200km, and the remaining lOOkm on the northeast of the main rupture was triggered by aftershocks. Study on the ruptures of this earthquake will be useful for studying the earthquake risk evolution on the Longmenshan fault system.展开更多
The permeabilities of fault rocks from the rupture of Wenchuan earthquake were measured by using nitrogen gas and distilled water as pore fluids under the confining pressure ranging from 20 to 180 MPa at room temperat...The permeabilities of fault rocks from the rupture of Wenchuan earthquake were measured by using nitrogen gas and distilled water as pore fluids under the confining pressure ranging from 20 to 180 MPa at room temperature. Experimental results indi- cate that both gas and water permeabilities decrease with increasing confining pressure, described by power law relationship, i.e., b = 0.2x10-3kl-0.557. The water permeability is about one order less than gas permeability and also half order smaller than the permeability corrected by the Klinkenberg effect, so-called intrinsic permeability. The differences in the permeabilies imply that the reduction of effective pore size caused by the adhesion of water molecules to clay particle surface and water-swelling of expandable clay minerals contributes to lessening the water permeability besides the Klinkenberg effect. Hence, the liquid permeability of fault rocks cannot be deduced by gas permeability by the Klinkenberg correction reliably and accurately, and it is necessary to use liquid as pore media to measure their transport property directly.展开更多
On September 5,2022,at Beijing time 12:52 p.m.,an M_(S)6.8 earthquake struck Luding County,GarzêTibetan Autonomous Prefecture,Sichuan Province.The epicenter of the earthquake was at the intersection of the Sichua...On September 5,2022,at Beijing time 12:52 p.m.,an M_(S)6.8 earthquake struck Luding County,GarzêTibetan Autonomous Prefecture,Sichuan Province.The epicenter of the earthquake was at the intersection of the Sichuan-Yunnan,Bayankala,and South China blocks.The tectonic background is extremely complex,and strong earthquakes occur frequently.Based on a predetermined focal location and focal mechanism solution for the earthquake,we reversed the focal depth and rupture process of the earthquake by fitting the teleseismic P and SH waves recorded by the global seismic network.The results show that the focal depth is 16 km,with the main rupture having a length of about 45 km near the epicenter,with a maximum displacement of 1.02 m.Although the rupture mainly propagates from the north–northwest(NNW)to the south–southeast(SSE)along the fault strike,there is a small-scale rupture slip zone at shallow depths in the north–northeast(NNE)direction along the epicenter of the seismogenic fault.This rupture image corresponds to the cluster distribution of aftershocks in the NNW and SSE directions starting from the epicenter,corresponding to the distribution of recorded landslides.The earthquake occurred on the Moxi fault,located in the southeastern section of the Xianshuihe fault.The major tectonic feature in this area is the southeastward movement of the Chuandian block relative to the Bayanhar block.展开更多
On May 22,2021,a Mw 7.3 earthquake occurred in Maduo County,Qinghai Province with the epicenter of 34.59°N,98.34°E.The distribution of aftershocks and surface ruptures suggested that the seismogenic structur...On May 22,2021,a Mw 7.3 earthquake occurred in Maduo County,Qinghai Province with the epicenter of 34.59°N,98.34°E.The distribution of aftershocks and surface ruptures suggested that the seismogenic structure might be the Jiangcuo fault(JF),~70 km south of East Kunlun fault(EKLF).Due to the high altitude and sparse human habitats,there are very few researches on the Jiangcuo fault,which makes us know little about the deformation features and even the geometry of Jiangcuo fault.In this study,we used the high-resolution pre-earthquake satellite images to interpret the spatial distribution and geometry of the Jiangcuo fault.Our results show that the Jiangcuo fault strikes nearly east,extending 180-km-long from Eling Lake to east of Changmahe Town.Based on the geometric features,the Jiangcuo fault could be divided into three segments characterized as the linear structures,fault valleys,scarps and systematic offset of channels.The boundary between Bayan Har Block and Qaidam Block is presented as a wide deformation zone named of Kunlun belt that is composed of East Kunlun fault and several branch faults around Anemaqen Mountain.Geometric analysis and deep lithosphere structure around Maduo County suggest that the Jiangcuo fault should be one of branch of East Kunlun fault at south,where the Kunlun fault developed as a giant flower structure.In addition,the seismic hazards potential of Jiangcuo fault should be given enough attention in the future,because west of the Jiangcuo fault,there is a rupture gap between the co-seismic surface ruptures of the 2001 Kunlun,2021 Maduo and 1937 Huashixia Earthquakes.展开更多
The source rupture process of the MS7.0 Lushan earthquake was here evaluated using 40 long-period P waveforms with even azimuth coverage of stations.Results reveal that the rupture process of the Lushan MS7.0 event to...The source rupture process of the MS7.0 Lushan earthquake was here evaluated using 40 long-period P waveforms with even azimuth coverage of stations.Results reveal that the rupture process of the Lushan MS7.0 event to be simpler than that of the Wenchuan earthquake and also showed significant differences between the two rupture processes.The whole rupture process lasted 36 s and most of the moment was released within the first 13 s.The total released moment is 1.9×1019N m with MW=6.8.Rupture propagated upwards and bilaterally to both sides from the initial point,resulting in a large slip region of 40 km×30 km,with the maximum slip of 1.8 m,located above the initial point.No surface displacement was estimated around the epicenter,but displacement was observed about 20 km NE and SW directions of the epicenter.Both showed slips of less than 40 cm.The rupture suddenly stopped at 20 km NE of the initial point.This was consistent with the aftershock activity.This phenomenon indicates the existence of significant variation of the medium or tectonic structure,which may prevent the propagation of the rupture and aftershock activity.The earthquake risk of the left segment of Qianshan fault is worthy of attention.展开更多
Field investigations allow to constrain the co-seismic surface rupture zone of ~400 km with a strike-slip up to 16.3 m associated with the 2001 Mw 7.8 Central Kunlun earthquake that occurred along the western segment...Field investigations allow to constrain the co-seismic surface rupture zone of ~400 km with a strike-slip up to 16.3 m associated with the 2001 Mw 7.8 Central Kunlun earthquake that occurred along the western segmentof the Kunlun fault, northern Tibet. The co-seismic rupture structures are almost duplicated on the pre-existing fault traces of the Kunlun fault. The deformational characteristics of the co-seismic surface ruptures reveal that the earthquake had a nearly pure strike-slip mechanism. The geologic and topographic evidence clearly shows that spatialdistributions of the co-seismic surface ruptures are restricted by the pre-existing geological structures of the Kunlun fault.展开更多
Seismologists have found that the first arrival frequencies of P waves at different seismic stations have different widths,that is,different periods or frequencies,and they think that this phenomenon can be used to id...Seismologists have found that the first arrival frequencies of P waves at different seismic stations have different widths,that is,different periods or frequencies,and they think that this phenomenon can be used to identify whether a Doppler effect is induced by earthquakes.However,the fault rupture process of a real earthquake is so complex that it is difficult to identify a frequency shift similar to the Doppler effect.A method to identify whether a Doppler effect is induced by an earthquake is proposed here.If a seismic station is in the direction of fault rupture propagation,this station could observe a Doppler effect induced by the earthquake.The Doppler effect causes the frequency of the seismic wave to shift from low frequency to high frequency,and the high frequency amplitudes become mutually superimposed.Under the combined influences of the absorption effect,geometric spreading effect and Doppler effect,the high frequency amplitude of the seismic wave will gradually become higher than the low frequency amplitude with increasing epicentral distance.If we find that the high frequency amplitude is higher than the low frequency amplitude with increasing epicentral distance in the direction of fault rupture propagation,then there is a Doppler effect.The fault that generated the Wenchuan earthquake is a reverse fault,and its horizontal rupture propagation velocity was low.To link fault rupture propagation velocity with the Doppler effect and identify the Doppler effect more easily,we decompose three-component records into two directions:the direction of fault rupture propagation and the direction perpendicular to the fault rupture propagation along the fault plane.The initial components of the two directions are processed by wavelet transform.Several seismic stations in the direction of fault rupture propagation of the Wenchuan earthquake were selected,and it was found that with increasing epicentral distance,the high frequency amplitudes of the wavelet spectra become obviously higher than the low frequency amplitudes.It can be concluded that due to the existence of the Doppler effect,high frequency amplitudes can overcome the influences of the absorption and geometric spreading effects on seismic waves in the fault rupture propagation process.展开更多
In this paper a two dimensional (2 D) model of earthquake fault rupturing was presented. It was estabilished on the basis of 1 D spring block model. Using this model, we studied the dynamical plane strain fractur...In this paper a two dimensional (2 D) model of earthquake fault rupturing was presented. It was estabilished on the basis of 1 D spring block model. Using this model, we studied the dynamical plane strain fracture problem, modeled the whole dynamical process of nucleating, expanding and propagating of fracture on a 2 D fault with homogeneous or inhomogeneous rupture strength distribution. Our studies show that under homogeneous prestress condition, the fault will gain enough momentum to tear strong obstacles in their propagating path. The rupturing fronts can also propagate forth around the isolated barriers. It is shown that the stopping conditions for rupturing processes play an important role in modeling whole earthquake process. We also studied the dynamical rupturing problems of the fault on which the rupture strength distribution is inhomogeneous, and modeled the earthquake sequence generated on a 2 D fault with the strength distribution of fractal structure. It possesses some similar features as a seismic sequence in the nature. These features mainly depend on the distribution of rupture strength on the fault plane and the level of initial stress drop. The modeling studies which were established on the basis of experiments and observations provided the physical basis for explaining some statistical rules of seismicity.展开更多
文摘In this study we performed a classical spectrum analysis of seismic waveforms recorded at far field stations of the great MW7.9 Wenchuan earthquake to observe the shifts of the corner frequency with azimuth due to the Doppler effect.Our results show that this damaging great earthquake had a dominating rupture propagation direction of 64.0°.The equivalent radius of the fault rupture surface was estimated to be 33 km,yielding the rupture area of about 3 500 km2.Thus the length of the rupture fault surface is about 230 km if the depth(or width) extent is 15 km.The computer program developed in this study can quickly provide the information about the source of a future large(damaging) earthquake,which could be very useful for predicting aftershocks and planning the rescue operations.
基金supported by Wenchuan Fault Scientific Drilling Program
文摘The May 12, 2008, Ms8.0 Wenchuan earthquake was the outcome of a recent movement of an active intra-continental thrust fault zone. The seismogenic fault of this earthquake underwent oblique-slip faulting along the central fault and pure thrust faulting along the range-front fault of the Longmenshan fault zone. The former had a steep dip and large vertical displacement, and the latter had a gentle dip and little vertical displacement. The fault zone consisted of compressive double fault ramps rup turing with right-lateral strike-slip components resulting from strain partitioning of a deep oblique slip fault in the brittle zone of the upper crust. The kinematic pattern and rupture mechanisms are complex for the seismogenic fault, as indicated by the geometric pattern of its surface ruptures, the coseismic displacement distribution and focal mechanisms of the main shock and aftershocks. As a tear fault, the NW-trending, left-lateral, strike-slip Xiaoyudong fault zone has accommodated NE-trending displacements with different shortening amounts. However, because of intense compression on the southwestern segment of the seismogenic fault, the left-lateral, strike-slip Xiaoyudong fault also carries a clear compression component. Normal faulting with a strike-slip component controls the formation of a fault-trough along the central fault, which is characterized by thrusting with a strike-slip component and strike-slip with thrusting. The fault-troughs are the product of the interaction of slip and grav ity on the seismogenic fault under specific geological and geomorphic conditions. Gravitational force exaggerated the vertical component of fault displacement, which by no means represents the actual maximum vertical displacement of the seismogenic fault.
基金supported by the "Wenchuan Earthquake Fault Scientific Drilling" of the National Science Foundation of China
文摘This article is to review results from scientific drilling and fault-zone trapped waves (FZTWs) at the south Longman-Shan fault (LSF) zone that ruptured in the 2008 May 12 M8 Wenchuan earthquake in Sichuan,China.Immediately after the mainshock,two Wenchuan Fault Scientific Drilling (WFSD) boreholes were drilled at WFSD-1 and WFSD-2 sites approximately 400 m and 1 km west of the surface rupture along the Yinxiu-Beichuan fault (YBF),the middle fault strand of the south LSF zone.Two boreholes met the principal slip of Wenchuan earthquake along the YBF at depths of 589-m and 1230-m,respectively.The slip is accompanied with a 100-200-m-wide zone consisting of fault gouge,breccia,cataclasite and fractures.Close to WFSD-1 site,the nearly-vertical slip of ~4.3-m with a 190-m wide zone of highly fractured rocks restricted to the hanging wall of the YBF was found at the ground surface after the Wenchuan earthquake.A dense linear seismic array was deployed across the surface rupture at this venue to record FZTWs generated by aftershocks.Observations and 3-D finite-difference simulations of FZTWs recorded at this cross-fault array and network stations close to the YBF show a distinct low-velocity zone composed by severely damaged rocks along the south LSF at seismogenic depths.The zone is several hundred meters wide along the principal slip,within which seismic velocities are reduced by ~30-55% from wall-rock velocities and with the maximum velocity reduction in the ~200-m-wide rupture core zone at shallow depth.The FZTW-inferred geometry and physical properties of the south LSF rupture zone at shallow depth are in general consistent with the results from petrological and structural analyses of cores and well log at WFSD boreholes.We interpret this remarkable low-velocity zone as being a break-down zone during dynamic rupture in the 2008 M8 earthquake.We examined the FZTWS generated by similar earthquakes before and after the 2008 mainshock and observed that seismic velocities within fault core zone was reduced by ~10% due to severe damage of fault rocks during the M8 mainshock.Scientific drilling and locations of aftershocks generating prominent FZTWs also indicate rupture bifurcation along the YBF and the Anxian-Guangxian fault (AGF),two strands of the south LSF at shallow depth.A combination of seismic,petrologic and geologic study at the south LSF leads to further understand the relationship between the fault-zone structure and rupture dynamics,and the amplification of ground shaking strength along the low-velocity fault zone due to its waveguide effect.
基金sponsored by National Natural Science Foundation of China (No.40674043, 90814001)China Earthquake Admini-stration (Wenchuan Earthquake Scientific Survey 03-05)The contribution No. of this paper is RCEG 0905 of Geophysical Prospecting Center,China Earthquake Administration
文摘The rupture process of the May 12, 2008 Ms8.0 Wenchuan earthquake was very complex. To study the rupture zones generated by this earthquake, four dense temporary seismic arrays across the two surface breaking traces of the main-shock were deployed in July and recorded a great amount of aftershocks. This paper focuses on the data interpretation of two arrays across the central main fault, the northern array line 1 and southern array line 3. The fault zone trapped waves recorded by the two arrays were used to study the structure of the central main fault and the difference between the northern and southern portions. The results show that the widths of the rupture zone are about 170-200 m and 200-230 m for northern and southern portions respectively. And the corresponding dip angles are 80° and 70°. The seismic velocity inside the fracture zone is about one half of the host rock. By comparison, the northern portion of the rupture zone is slightly narrower and steeper than the southern portion. Besides these differences, one more interesting and important difference is the positions of the rupture zone with respect to surface breaking traces. At the northern portion, the rupture zone is centered at the surface breaking trace, while at the southern portion it is not but is shifted to the northwest. This difference reflects the difference of rupture behaviors between two portions of the central main fault. The width of the rupture zone is smaller than that of MS.1 Kunlun earthquake though these two earthquakes have almost the same magnitudes. Multiple ruptures may be one factor to cause the narrower rupture zone.
基金the Basic Research Foundation of the Institute of Geomechanics,CAGS(grant DZLXJK200707)Natural Science Foundation of China grant 40674058)
文摘A three-dimensional local-scale P-velocity model down to 25 km depth around the main shock epicenter region was constructed using 83821 event-to-receiver seismic rays from 5856 aftershocks recorded by a newly deployed temporary seismic network. Checkerboard tests show that our tomographic model has lateral and vertical resolution of -2 km. The high-resolution P-velocity model revealed interesting structures in the seismogenic layer: (1) The Guanxian-Anxian fault, Yingxiu-Beichuan fault and Wenchuan-Maoxian fault of the Longmen Shan fault zone are well delineated by sharp upper crustal velocity changes; (2) The Pengguan massif has generally higher velocity than its surrounding areas, and may extend down to at least -10 km from the surface; (3) A sharp lateral velocity variation beneath the Wenchuan-Maoxian fault may indicate that the Pengguan massif's western boundary and/or the Wenchuan-Maoxian fault is vertical, and the hypocenter of the Wenchuan earthquake possibly located at the conjunction point of the NW dipping Yingxiu-Beichuan and Guanxian-Anxian faults, and vertical Wenchuan-Maoxian fault; (4) Vicinity along the Yingxiu- Beichuan fault is characterized by very low velocity and low seismicity at shallow depths, possibly due to high content of porosity and fractures; (5) Two blocks of low-velocity anomaly are respectively imaged in the hanging wall and foot wall of the Guanxian-Anxian fault with a -7 km offset with -5 km vertical component.
基金supported by National Natural Science Foundation of China (41304046)
文摘On 25 April, 2015, an Mw7.9 earthquake occurred in Nepal, which caused great economic loss and casualties. However, almost no surface ruptures were observed. Therefore, in order to interpret the phenomenon, we study the rupture process of the earthquake to seek answers. Inversion of teleseismic body-wave data is applied to estimate the rupture process of the 2015 Nepal earthquake. To obtain stable solutions, smoothing and non-negative constraints are introduced. 48 teleseismic stations with good coverage are chosen. Finite fault model is established with length and width of 195 km and 150 km, and we set the initial seismic source parameters referring to CMT solutions. Inversion results indicate that the focal mechanism of this earthquake is a thrust fault type, and the strike, dip and rake angle are in accordance with CMT results. The seismic moment is 0.9195 ×10^(21)Nm(Mw7.9), and source duration is about 70s. The rupture nucleated near the hypocenter and then propagated along the dip direction to the southeast, and the maximum slip amounts to 5.2 m. Uncertainties on the amount of slip retrieved by different inversion methods still exist, the overall characteristics are inconsistent. The lack of shallow slip during the 2015 Gorkha earthquake implies future seismic hazard and this region should be paid more attention to.
基金Special R&D Project of Earthquake Trade ( No.200808041)the Project of Emergency Investigation of M_S8.0 Wenchuan Earthquake of CEA
文摘The great M_S8.0 Wenchuan earthquake on May 12,2008 was generated by abrupt faulting in the Yingxiu-Beichuan fault along the Longmenshan fault zone. The earthquake not only produced surface ruptures along the Yingxiu-Beichuan and Guanxian-Jiangyou faults,but also surface ruptures,arching of highway pavement,sand-boils and waterspouts in various degrees in areas such as Shifang and Mianzhu on the Chengdu Plain. To understand the shallow geological structures under the surface rupture zone,a 6350m long high-resolution shallow seismic reflection profile in near-EW direction was performed. This profile is located at Shigu town,Shifang city,where a suspected earthquake surface rupture zone was discovered. In this study,a group interval of 3m,shotpoint interval of 18m,and a 300-channel 25-fold observation system were used. In consideration of both near-surface reflections and dipping interface imaging,we adopted the split-spread geometry and asymmetrical zero-offset receiving technique. To better suppress random-noise and raise the signal-to-noise ratio of seismic data,30 times vertical stacking of vibrator signals was made for each common-shot gather after correlation of individual records. By using the above work method and spread geometry,we obtained high-resolution images of structures in the depth range of 15m~800m after data processing. The result shows the existence of buried thrust faults thrusting to the plain area and back-thrust faults under the surface rupture zone. It also shows that the activity of the buried thrust faults may be the main cause for folding and deformation in near-surface strata and coseismic surface rupturing.
基金funded by basic research fund programs DQJB08B02 and DQJB06A01 of state-level public welfare scientific research institutions of Institute of Geophysics,CEA
文摘The M_S8.0 Wenchuan earthquake in Sichuan caused heavy casualties and serious economic loss because of damage to engineering structures in high earthquake intensity regions. Earthquake intensity, especially in the near source region, as a macroscopic description of distribution of strong ground motions certain correlations with the earthquake source process, such as rupture directivity and the hanging-wall effect of the near-fault ground motions of this earthquake. In this article some qualitative analyses are carried out. The conclusion of this study may be useful for emergence response and rescue after earthquakes, when the strong ground motion recordings and the intensity distribution are not available immediately.
文摘The opinions of two papers carried in the journal "Seismology and Geology" are discussed in the paper.One is that the Tangshan fault is a high-angle,west-dipping and thrust with strike-slip fault.The other is that the Fuzhuang-Xihe fault distributed on the east side of Tangshan city is the seismogenic fault that caused the Tangshan earthquake.For the former opinion,it needs to explain the relationship between the active style of the thrust Tangshan fault and the formation genesis of a Quaternary depression along the west side of Tangshan city.For the latter opinion,if the Fuzhuang-Xihe fault is the seismogenic fault of the Tangshan earthquake,it needs to explain the genesis relationship between this west-dip slip fault zone and the strike-slip surface fissure zone that extends through Tangshan city.And it needs more evidence exclude the possibility that the surface rupture belongs to the rupturing of a secondary structure.This paper suggests doing more work on the active fault that controls the Caobo Quaternary depression.
基金Supported by the National Basic Research Program of China (Grant No. 2004CB418404-4)the National Natural Science Foundation of China (Grant Nos. 40574025 and 40874026)
文摘Focal mechanism and dynamic rupture process of the Wenchaun Ms8.0 earthquake in Sichuan province on 12 May 2008 were obtained by inverting long period seismic data from the Global Seismic Network (GSN), and characteristics of the co-seismic displacement field near the fault were quantitatively ana-lyzed based on the inverted results to investigate the mechanism causing disaster. A finite fault model with given focal mechanism and vertical components of the long period P-waves from 21 stations with evenly azimuthal coverage were adopted in the inversion. From the inverted results as well as after-shock distribution, the causative fault of the great Wenchuan earthquake was confirmed to be a fault of strike 225°/dip 39°/rake 120°, indicating that the earthquake was mainly a thrust event with right-lateral strike-slip component. The released scalar seismic moment was estimated to be about 9.4×1020―2.0×1021 Nm, yielding moment magnitude of Mw7.9―8.1. The great Wenchuan earthquake occurred on a fault more than 300 km long, and had a complicated rupture process of about 90 s duration time. The slip distribution was highly inhomogeneous with the average slip of about 2.4 m. Four slip-patches broke the ground surface. Two of them were underneath the regions of Wenchuan-Yingxiu and Beichuan, respectively, with the first being around the hypocenter (rupture initiation point), where the largest slip was about 7.3 m, and the second being underneath Beichuan and extending to Pingwu, where the largest slip was about 5.6 m. The other two slip-patches had smaller sizes, one having the maximum slip of 1.8 m and lying underneath the north of Kangding, and the other having the maximum slip of 0.7 m and lying underneath the northeast of Qingchuan. Average and maximum stress drops over the whole fault plane were estimated to be 18 MPa and 53 MPa, respectively. In addition, the co-seismic displacement field near the fault was analyzed. The results indicate that the features of the co-seismic displacement field were coincident with those of the intensity distribution in the meizo-seismal area, implying that the large-scale, large-amplitude and surface-broken thrust dislocation should be responsible for the serious disaster in the near fault area.
基金funded by the National Natural Science Foundation of China(Grant Nos.42241206,92058210,42074047,U2039203,42130306)。
文摘Recent geodetic and seismological observations of two major earthquakes in southeastern Türkiye in February 2023 have revealed complex rupture initiation,propagation,and segmentation along the East Anatolian Fault Zone(EAFZ)and surrounding regions.However,the role of upper crust structures along the EAFZ in determining the diverse rupture processes of this earthquake doublet remains unclear.To further investigate this,we employed double-difference location and seismic tomography techniques to determine high-resolution seismic velocities(V_(P),V_(S))and Poisson’s ratio(σ)structures using a multiparameter joint tomographic algorithm.Our dataset includes 100,833 high-quality source-receiver travel-time pairs of P-and Swaves.We find that the unique rupture processes of this earthquake doublet were primarily influenced by contrasting crustal seismic structures and localized geological settings.The M_(w)7.8 mainshock was initiated within a transitional edge zone characterized by a rigid part(asperity)of the seismogenic zone with sharp contrast variations in rock strength ranging from low to high along the EAFZ.In comparison,the M_(w)7.6 rupture originated in a ductile belt featuring fluid saturation with low-VP,low-VS,and high-σvalues that extended parallel to the Cardak Fault.The pronounced contrast structures observed along the former rupture can be attributed to the oblique collision system between the weakened section of the east Anatolian plateau and the brittle Arabian platform,while the latter rupture was initiated within the ductile structure associated with fluid intrusion caused by the northward subduction of the Cyprus slab and subsequent detachment.Furthermore,the occurrence of the first earthquake(E1)serves to alleviate shear stress on the second earthquake(E2)fault,potentially impeding the initiation of an E2 rupture.On the contrary,this event also significantly reduces the normal stress acting on the E2 fault due to a double left-lateral strike-slip system within a triangular region.This reduction not only results in a decrease of fault friction force and an increase in rock porosity but also induces lower strain drops and the redistribution of Coulomb stress,thereby contributing to the initiation of the E2 event.The proposed rupture pattern exceeds the conventional model that governs individual earthquake ruptures,offering new insights for mitigating potential seismic disasters in Türkiye.The lessons learned from this doublet event can contribute to reevaluating the ongoing risk of damaging earthquakes in China’s South-North Seismic Zone or other regions worldwide with comparable geological conditions.
基金sponsored by the Special Earthquake Research Program(20070851)National Key Basic Research Development Planning grogram(2004CB418401)+1 种基金Basic Science Research Professional of Institute of Crustal Dynamics (2008)National Science and Technology Support Program(2006BAC13B01 -0202),China
文摘The M8.0 Wenchuan earthquake occurred on the Longmenshan fault zone. Based on field investigation of the surface rupture and focal mechanism study of the aftershocks, we discuss the geological relationship of the main, secondary and triggered ruptures. The main rupture is about 200km long and can be divided into the south part and the north part. The south part consists of two parallel fault zones characterized by reverse faulting, with several parallel secondary ruptures on the hanging wall of the main fault, and the north part is a single main fault zone characterized by lateral strike-slip and reverse faulting. Compared to a 300km long aftershock distribution, the surface rupture only occupies 200km, and the remaining lOOkm on the northeast of the main rupture was triggered by aftershocks. Study on the ruptures of this earthquake will be useful for studying the earthquake risk evolution on the Longmenshan fault system.
基金supported by Wenchuan Fault Scientific Drilling Program(Grant No.WFSD-09)the Foundation of State Key Laboratory of Earthquake Dynamics(Grant No.LED2010A03)+1 种基金the National Natural Science Foundation of China(Grant No.41372202)the Foundation of Earthquake Sciences of China Earthquake Administration(Grant No.2008419012)
文摘The permeabilities of fault rocks from the rupture of Wenchuan earthquake were measured by using nitrogen gas and distilled water as pore fluids under the confining pressure ranging from 20 to 180 MPa at room temperature. Experimental results indi- cate that both gas and water permeabilities decrease with increasing confining pressure, described by power law relationship, i.e., b = 0.2x10-3kl-0.557. The water permeability is about one order less than gas permeability and also half order smaller than the permeability corrected by the Klinkenberg effect, so-called intrinsic permeability. The differences in the permeabilies imply that the reduction of effective pore size caused by the adhesion of water molecules to clay particle surface and water-swelling of expandable clay minerals contributes to lessening the water permeability besides the Klinkenberg effect. Hence, the liquid permeability of fault rocks cannot be deduced by gas permeability by the Klinkenberg correction reliably and accurately, and it is necessary to use liquid as pore media to measure their transport property directly.
基金the Central Publicinterest Scientific Institution Basal Research Fund(2021IEF0501 and CEAIEF20220205)the National Natural Science Foundation of China(42074100).
文摘On September 5,2022,at Beijing time 12:52 p.m.,an M_(S)6.8 earthquake struck Luding County,GarzêTibetan Autonomous Prefecture,Sichuan Province.The epicenter of the earthquake was at the intersection of the Sichuan-Yunnan,Bayankala,and South China blocks.The tectonic background is extremely complex,and strong earthquakes occur frequently.Based on a predetermined focal location and focal mechanism solution for the earthquake,we reversed the focal depth and rupture process of the earthquake by fitting the teleseismic P and SH waves recorded by the global seismic network.The results show that the focal depth is 16 km,with the main rupture having a length of about 45 km near the epicenter,with a maximum displacement of 1.02 m.Although the rupture mainly propagates from the north–northwest(NNW)to the south–southeast(SSE)along the fault strike,there is a small-scale rupture slip zone at shallow depths in the north–northeast(NNE)direction along the epicenter of the seismogenic fault.This rupture image corresponds to the cluster distribution of aftershocks in the NNW and SSE directions starting from the epicenter,corresponding to the distribution of recorded landslides.The earthquake occurred on the Moxi fault,located in the southeastern section of the Xianshuihe fault.The major tectonic feature in this area is the southeastward movement of the Chuandian block relative to the Bayanhar block.
基金supported by National Nonprofit Fundamental Research Grant of China,Institute of Geology,China,Earthquake Administration(Nos.IGCEA1803IGCEA2110)。
文摘On May 22,2021,a Mw 7.3 earthquake occurred in Maduo County,Qinghai Province with the epicenter of 34.59°N,98.34°E.The distribution of aftershocks and surface ruptures suggested that the seismogenic structure might be the Jiangcuo fault(JF),~70 km south of East Kunlun fault(EKLF).Due to the high altitude and sparse human habitats,there are very few researches on the Jiangcuo fault,which makes us know little about the deformation features and even the geometry of Jiangcuo fault.In this study,we used the high-resolution pre-earthquake satellite images to interpret the spatial distribution and geometry of the Jiangcuo fault.Our results show that the Jiangcuo fault strikes nearly east,extending 180-km-long from Eling Lake to east of Changmahe Town.Based on the geometric features,the Jiangcuo fault could be divided into three segments characterized as the linear structures,fault valleys,scarps and systematic offset of channels.The boundary between Bayan Har Block and Qaidam Block is presented as a wide deformation zone named of Kunlun belt that is composed of East Kunlun fault and several branch faults around Anemaqen Mountain.Geometric analysis and deep lithosphere structure around Maduo County suggest that the Jiangcuo fault should be one of branch of East Kunlun fault at south,where the Kunlun fault developed as a giant flower structure.In addition,the seismic hazards potential of Jiangcuo fault should be given enough attention in the future,because west of the Jiangcuo fault,there is a rupture gap between the co-seismic surface ruptures of the 2001 Kunlun,2021 Maduo and 1937 Huashixia Earthquakes.
基金supported by the National Natural Science Foundation of China(41104033)the Basic Research Project of Institute of Earthquake Science,CEA(2011IES010104)
文摘The source rupture process of the MS7.0 Lushan earthquake was here evaluated using 40 long-period P waveforms with even azimuth coverage of stations.Results reveal that the rupture process of the Lushan MS7.0 event to be simpler than that of the Wenchuan earthquake and also showed significant differences between the two rupture processes.The whole rupture process lasted 36 s and most of the moment was released within the first 13 s.The total released moment is 1.9×1019N m with MW=6.8.Rupture propagated upwards and bilaterally to both sides from the initial point,resulting in a large slip region of 40 km×30 km,with the maximum slip of 1.8 m,located above the initial point.No surface displacement was estimated around the epicenter,but displacement was observed about 20 km NE and SW directions of the epicenter.Both showed slips of less than 40 cm.The rupture suddenly stopped at 20 km NE of the initial point.This was consistent with the aftershock activity.This phenomenon indicates the existence of significant variation of the medium or tectonic structure,which may prevent the propagation of the rupture and aftershock activity.The earthquake risk of the left segment of Qianshan fault is worthy of attention.
文摘Field investigations allow to constrain the co-seismic surface rupture zone of ~400 km with a strike-slip up to 16.3 m associated with the 2001 Mw 7.8 Central Kunlun earthquake that occurred along the western segmentof the Kunlun fault, northern Tibet. The co-seismic rupture structures are almost duplicated on the pre-existing fault traces of the Kunlun fault. The deformational characteristics of the co-seismic surface ruptures reveal that the earthquake had a nearly pure strike-slip mechanism. The geologic and topographic evidence clearly shows that spatialdistributions of the co-seismic surface ruptures are restricted by the pre-existing geological structures of the Kunlun fault.
文摘Seismologists have found that the first arrival frequencies of P waves at different seismic stations have different widths,that is,different periods or frequencies,and they think that this phenomenon can be used to identify whether a Doppler effect is induced by earthquakes.However,the fault rupture process of a real earthquake is so complex that it is difficult to identify a frequency shift similar to the Doppler effect.A method to identify whether a Doppler effect is induced by an earthquake is proposed here.If a seismic station is in the direction of fault rupture propagation,this station could observe a Doppler effect induced by the earthquake.The Doppler effect causes the frequency of the seismic wave to shift from low frequency to high frequency,and the high frequency amplitudes become mutually superimposed.Under the combined influences of the absorption effect,geometric spreading effect and Doppler effect,the high frequency amplitude of the seismic wave will gradually become higher than the low frequency amplitude with increasing epicentral distance.If we find that the high frequency amplitude is higher than the low frequency amplitude with increasing epicentral distance in the direction of fault rupture propagation,then there is a Doppler effect.The fault that generated the Wenchuan earthquake is a reverse fault,and its horizontal rupture propagation velocity was low.To link fault rupture propagation velocity with the Doppler effect and identify the Doppler effect more easily,we decompose three-component records into two directions:the direction of fault rupture propagation and the direction perpendicular to the fault rupture propagation along the fault plane.The initial components of the two directions are processed by wavelet transform.Several seismic stations in the direction of fault rupture propagation of the Wenchuan earthquake were selected,and it was found that with increasing epicentral distance,the high frequency amplitudes of the wavelet spectra become obviously higher than the low frequency amplitudes.It can be concluded that due to the existence of the Doppler effect,high frequency amplitudes can overcome the influences of the absorption and geometric spreading effects on seismic waves in the fault rupture propagation process.
文摘In this paper a two dimensional (2 D) model of earthquake fault rupturing was presented. It was estabilished on the basis of 1 D spring block model. Using this model, we studied the dynamical plane strain fracture problem, modeled the whole dynamical process of nucleating, expanding and propagating of fracture on a 2 D fault with homogeneous or inhomogeneous rupture strength distribution. Our studies show that under homogeneous prestress condition, the fault will gain enough momentum to tear strong obstacles in their propagating path. The rupturing fronts can also propagate forth around the isolated barriers. It is shown that the stopping conditions for rupturing processes play an important role in modeling whole earthquake process. We also studied the dynamical rupturing problems of the fault on which the rupture strength distribution is inhomogeneous, and modeled the earthquake sequence generated on a 2 D fault with the strength distribution of fractal structure. It possesses some similar features as a seismic sequence in the nature. These features mainly depend on the distribution of rupture strength on the fault plane and the level of initial stress drop. The modeling studies which were established on the basis of experiments and observations provided the physical basis for explaining some statistical rules of seismicity.