The 8.0 Mw Wenchuan earthquake triggered widespread and large scale landslides in mountainous regions. An approach was used to map and assess landslide susceptibility in a given area. A numerical rating system was app...The 8.0 Mw Wenchuan earthquake triggered widespread and large scale landslides in mountainous regions. An approach was used to map and assess landslide susceptibility in a given area. A numerical rating system was applied to five factors that contribute to slope instability. Factors such as lithology, topography, streams and faults have an important influence as event-controlling factors for landslide susceptibility assessment. A final map is provided to show areas of low, medium, and high landslide susceptibility. Areas identified as having high landslide susceptibility were located in the central, northeastern, and far south regions of the study area. The assessment results will help decision makers to select safe sites for emergency placement of refuges and plan for future reconstruction. The maps may also be used as a basis for landslide risk management in the study area.展开更多
Peak discharge of flood in small mountainous watershed is usually calculated using the "Rainstorm–runoff calculation method in small watersheds in Sichuan Province"(RRM). This study evaluated the RRM calcul...Peak discharge of flood in small mountainous watershed is usually calculated using the "Rainstorm–runoff calculation method in small watersheds in Sichuan Province"(RRM). This study evaluated the RRM calculation using real-time monitored rainfall and hydrologic data from a small watershed in the Wenchuan Earthquake area of Sichuan Province, China. The results indicated that the discharge values given by the RRM are commonly overestimating the measured discharge. The overestimation rate was discussed and empirical equations were proposed for improving RRM estimations, based on the relationship between calculated and measured discharge values at different watershed scales(2, 30, and 40 km2), under different rainfall probabilities(0.97–0.5, 0.5–0.2, and 0.2–0.002), and for different rainfall durations(0–6, 6–24, and >24 h). The results of this study help contribute to the understanding of water floods formation and help provide more accurate estimations of peak flow discharge in small watersheds in the Wenchuan Earthquake area.展开更多
A total of more than 50000 landslides has occurred in Sichuan province since the"5·12"Wenchuan earthquake,resulting in serious damage to the surface vegetation in southwestern China.In this study,we sel...A total of more than 50000 landslides has occurred in Sichuan province since the"5·12"Wenchuan earthquake,resulting in serious damage to the surface vegetation in southwestern China.In this study,we select Yingxiu,the epicenter of Wenchuan earthquake,as the experimental area.The vegetation coverage information of the experimental area is extracted from the remote sensing images collected in the year of 2005,2011 and 2013,respectively.The surface vegetation coverage in different periods is analyzed,and the vegetation recovery rate of the whole area is calculated.The experimental results show that in the first three years after the earthquake,the speed of vegetation restoration is slow,and the vegetation coverage rate is less than 20%better than 0.241,while in 2013,the vegetation coverage increases significantly.展开更多
A complete landslide inventory and attribute database is the importantly fundamental for the study of the earthquake-induced landslide.Substantial landslides were triggered by the MW7.9 Wenchuan earthquake on May 12th...A complete landslide inventory and attribute database is the importantly fundamental for the study of the earthquake-induced landslide.Substantial landslides were triggered by the MW7.9 Wenchuan earthquake on May 12th,2008.Google Earth images of preand post-earthquakes show that 52194 co-seismic landslides were recognized and mapped,with a total landslides area of 1021 km2.Based on the statistics,we assigned all landslide parameters and established the co-seismic landslides database,which includes area,length,and width of landslides,elevation of the scarp top and foot edge,and the top and bottom elevations of each located slope.Finally,the spatial distribution and the above attribute parameters of landslides were analyzed.The results show that the spatial distribution of the co-seismic landslides is extremely uneven.The landslides that mainly occur in a rectangular area(a width of 30 km of the hanging wall of the Yingxiu-Beichuan fault and a length of 120 km between Yingxiu and Beichuan)are obviously controlled by surface rupture,terrain,and peak ground acceleration.Meanwhile,a large number of small landslides(individual landslide area less than 10000 m2)contribute less to the total landslides area.The number of landslides larger than 10000 m2 accounts for 38.7%of the total number of co-seismic landslides,while the area of those landslides account for 88%of the total landslides area.The 52194 co-seismic landslides are caused by bedrock collapse that usually consists of three parts:source area,transport area,and accumulation area.However,based on the area-volume power-law relationship,the resulting regional landslide volume may be much larger than the true landslide volume if the landslide volume is calculated using the influenced area from each landslide.展开更多
The recent plethora of GPS observations compensates for the 20-year-old lack in vertical displacement data for the Guanzhong region. The 2001—2007 three-dimensional(3D) crustal deformation data suggest regional mov...The recent plethora of GPS observations compensates for the 20-year-old lack in vertical displacement data for the Guanzhong region. The 2001—2007 three-dimensional(3D) crustal deformation data suggest regional movement with a horizontal velocity of 3—7 mm/a,predominantly from SSE in the west to SE in the east, and vertical inherited movement with velocity of -7 mm/a to 4 mm/a. After the Wenchuan earthquake, the GPS data suggest that the effect of the earthquake on the regional deformation is greater in the west than the east.The horizontal displacement increased during 2007—2008; however, the reverse was observed in 2008—2009. The vertical displacement in the western part of the region increased in 2008 and has been gradually returning to normal since 2009; however, in the eastern part,the effect of the earthquake remains.展开更多
The reason for the failure to forecast the Wenchuan Ms 8.0 earthquake is under study, based on the systematically collection of the seismicity anomalies and their analysis results from annual earthquake tendency forec...The reason for the failure to forecast the Wenchuan Ms 8.0 earthquake is under study, based on the systematically collection of the seismicity anomalies and their analysis results from annual earthquake tendency forecasts between the 2001 Western Kunlun Mountains Pass Ms8. 1 earthquake and the 2008 Wenchuan Ms8.0 earthquake. The results show that the earthquake tendency estimation of Chinese Mainland is for strong earthquakes to occur in the active stage, and that there is still potential for the occurrence of a Ms8.0 large earthquake in Chinese Mainland after the 2001 Western Kuulun Mountains Pass earthquake. However the phenomena that many large earthquakes occurred around Chinese Mainland, and the 6-year long quietude of Ms7.0 earthquake and an obvious quietude of Ms5.0 and Ms6.0 earthquakes during 2002- 2007 led to the distinctly lower forecast estimation of earthquake tendency in Chinese Mainland after 2006. The middle part in the north-south seismic belt has been designated a seismic risk area of strong earthquake in recent years, but, the estimation of the risk degree in Southwestern China is insufficient after the Ning'er Ms6.4 earthquake in Yunnan in 2007. There are no records of earthquakes with Ms ≥ 7.0 in the Longmenshan fault, which is one of reasons that this fault was not considered a seismic risk area of strong earthquakes in recent years.展开更多
基金Research Foundation of SKLGPNational Natural Science Foundation of China Under Grant No. 40772206973 Program Under Grant No.2008CB425801
文摘The 8.0 Mw Wenchuan earthquake triggered widespread and large scale landslides in mountainous regions. An approach was used to map and assess landslide susceptibility in a given area. A numerical rating system was applied to five factors that contribute to slope instability. Factors such as lithology, topography, streams and faults have an important influence as event-controlling factors for landslide susceptibility assessment. A final map is provided to show areas of low, medium, and high landslide susceptibility. Areas identified as having high landslide susceptibility were located in the central, northeastern, and far south regions of the study area. The assessment results will help decision makers to select safe sites for emergency placement of refuges and plan for future reconstruction. The maps may also be used as a basis for landslide risk management in the study area.
基金supported by the National Research Project (2017YFC1502504)International S&T Cooperation Project (2016YFE0122400)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences, Grant No. XDA23*, the Open Fund (SKLGP2017K013)Youth Innovation Promotion Association
文摘Peak discharge of flood in small mountainous watershed is usually calculated using the "Rainstorm–runoff calculation method in small watersheds in Sichuan Province"(RRM). This study evaluated the RRM calculation using real-time monitored rainfall and hydrologic data from a small watershed in the Wenchuan Earthquake area of Sichuan Province, China. The results indicated that the discharge values given by the RRM are commonly overestimating the measured discharge. The overestimation rate was discussed and empirical equations were proposed for improving RRM estimations, based on the relationship between calculated and measured discharge values at different watershed scales(2, 30, and 40 km2), under different rainfall probabilities(0.97–0.5, 0.5–0.2, and 0.2–0.002), and for different rainfall durations(0–6, 6–24, and >24 h). The results of this study help contribute to the understanding of water floods formation and help provide more accurate estimations of peak flow discharge in small watersheds in the Wenchuan Earthquake area.
基金supported by the NationalKey R&D Program of China(2019YFC1510700)the National Natural Science Foundation of China(41602355,41701499)+2 种基金the Sichuan Science and Technology Program(2018GZ0265)Chengdu University of Technology Backbone Teacher Program(2019SJ01-04230)Special earthquake science and technology project of Sichuan Seismological Bureau(LY1814)。
文摘A total of more than 50000 landslides has occurred in Sichuan province since the"5·12"Wenchuan earthquake,resulting in serious damage to the surface vegetation in southwestern China.In this study,we select Yingxiu,the epicenter of Wenchuan earthquake,as the experimental area.The vegetation coverage information of the experimental area is extracted from the remote sensing images collected in the year of 2005,2011 and 2013,respectively.The surface vegetation coverage in different periods is analyzed,and the vegetation recovery rate of the whole area is calculated.The experimental results show that in the first three years after the earthquake,the speed of vegetation restoration is slow,and the vegetation coverage rate is less than 20%better than 0.241,while in 2013,the vegetation coverage increases significantly.
基金jointly sponsored by FundamentalScientific Research Fund in the IEF,CEA(2019IEF0201,2015IES0102,2017IES0101)National Natural Science Foundation of China(41502204)+1 种基金Seismic Active Fault Exploration Project based on High-resolution Remote Sensing Interpretation Technology by Department of Earthquake Damage Defence,CEA(15230003)Earthquake Science and Technology Spark Program,CEA(XH18015)。
文摘A complete landslide inventory and attribute database is the importantly fundamental for the study of the earthquake-induced landslide.Substantial landslides were triggered by the MW7.9 Wenchuan earthquake on May 12th,2008.Google Earth images of preand post-earthquakes show that 52194 co-seismic landslides were recognized and mapped,with a total landslides area of 1021 km2.Based on the statistics,we assigned all landslide parameters and established the co-seismic landslides database,which includes area,length,and width of landslides,elevation of the scarp top and foot edge,and the top and bottom elevations of each located slope.Finally,the spatial distribution and the above attribute parameters of landslides were analyzed.The results show that the spatial distribution of the co-seismic landslides is extremely uneven.The landslides that mainly occur in a rectangular area(a width of 30 km of the hanging wall of the Yingxiu-Beichuan fault and a length of 120 km between Yingxiu and Beichuan)are obviously controlled by surface rupture,terrain,and peak ground acceleration.Meanwhile,a large number of small landslides(individual landslide area less than 10000 m2)contribute less to the total landslides area.The number of landslides larger than 10000 m2 accounts for 38.7%of the total number of co-seismic landslides,while the area of those landslides account for 88%of the total landslides area.The 52194 co-seismic landslides are caused by bedrock collapse that usually consists of three parts:source area,transport area,and accumulation area.However,based on the area-volume power-law relationship,the resulting regional landslide volume may be much larger than the true landslide volume if the landslide volume is calculated using the influenced area from each landslide.
基金supported by the Shanxi Science and Technology Research and Development program(2012SF2-17)National Nature Science Foundation of China(41174083)
文摘The recent plethora of GPS observations compensates for the 20-year-old lack in vertical displacement data for the Guanzhong region. The 2001—2007 three-dimensional(3D) crustal deformation data suggest regional movement with a horizontal velocity of 3—7 mm/a,predominantly from SSE in the west to SE in the east, and vertical inherited movement with velocity of -7 mm/a to 4 mm/a. After the Wenchuan earthquake, the GPS data suggest that the effect of the earthquake on the regional deformation is greater in the west than the east.The horizontal displacement increased during 2007—2008; however, the reverse was observed in 2008—2009. The vertical displacement in the western part of the region increased in 2008 and has been gradually returning to normal since 2009; however, in the eastern part,the effect of the earthquake remains.
基金sponsored by the Key Project of Chinese National Programs for Fundamental Research and Development (973 program) (2004CB418406)the State Science and Technology Program of Tackle Key Problem(2006BAC01B02-01-04),China
文摘The reason for the failure to forecast the Wenchuan Ms 8.0 earthquake is under study, based on the systematically collection of the seismicity anomalies and their analysis results from annual earthquake tendency forecasts between the 2001 Western Kunlun Mountains Pass Ms8. 1 earthquake and the 2008 Wenchuan Ms8.0 earthquake. The results show that the earthquake tendency estimation of Chinese Mainland is for strong earthquakes to occur in the active stage, and that there is still potential for the occurrence of a Ms8.0 large earthquake in Chinese Mainland after the 2001 Western Kuulun Mountains Pass earthquake. However the phenomena that many large earthquakes occurred around Chinese Mainland, and the 6-year long quietude of Ms7.0 earthquake and an obvious quietude of Ms5.0 and Ms6.0 earthquakes during 2002- 2007 led to the distinctly lower forecast estimation of earthquake tendency in Chinese Mainland after 2006. The middle part in the north-south seismic belt has been designated a seismic risk area of strong earthquake in recent years, but, the estimation of the risk degree in Southwestern China is insufficient after the Ning'er Ms6.4 earthquake in Yunnan in 2007. There are no records of earthquakes with Ms ≥ 7.0 in the Longmenshan fault, which is one of reasons that this fault was not considered a seismic risk area of strong earthquakes in recent years.