Due to the continuous water percolation and soaking during development of the oilfields, the dynamic balance of a reservoir is altered by the fluid; and the rock framework, pores and throats will be reformed and destr...Due to the continuous water percolation and soaking during development of the oilfields, the dynamic balance of a reservoir is altered by the fluid; and the rock framework, pores and throats will be reformed and destroyed. The interaction between the fluid and the rock leads to a series of micro geological processes, such as clastation, denudation, dissolution and deposition, in the small spaces connected by pores or throats, which control the accumulation and distribution of the remaining oil. These micro geological processes are the essential factors for the evolution of the reservoirs during development. This evolution makes the recovery of the remaining oil more complex.展开更多
C oilfield is a heavy oil field developed by horizontal wells and single sand body in Bohai oilfield. The edge and bottom water of the reservoir is active and the natural energy development mode is adopted. The compre...C oilfield is a heavy oil field developed by horizontal wells and single sand body in Bohai oilfield. The edge and bottom water of the reservoir is active and the natural energy development mode is adopted. The comprehensive water cut of the oilfield was 95.3%, which had entered the stage of high water cut oil production. Some reservoirs were limited by crude oil viscosity and oil column height. Under the condition of existing development well pattern, some reserves were not produced or the degree of production was low, and the degree of well control was not high, so there is room for tapping the potential of remaining oil. This paper studied the rising law of water ridge of horizontal wells in bottom water reservoir by reservoir engineering method, and guided the infilling limit of horizontal wells in bottom water reservoir. At the same time, combined with the research results of fine reservoir description, the geological model was established, the numerical simulation was carried out, and the distribution law of remaining oil was analyzed. Through this study, we could understand the law of water flooding and remaining oil in the high water cut period of bottom water heavy oil reservoir, so as to provide guidance for the development strategy of this type of reservoir in the high water cut period.展开更多
Waterflooding experiments were performed using Micro-CT on four cores of different pore structures from Donghe sandstone reservoirs in the Tarim Basin. The water, oil and grains were accurately separated by the advanc...Waterflooding experiments were performed using Micro-CT on four cores of different pore structures from Donghe sandstone reservoirs in the Tarim Basin. The water, oil and grains were accurately separated by the advanced image processing technology, the pore network model was established, and parameters such as the number of throats and the throat size distribution were calculated to characterize the microscopic heterogeneity of pore structure, the flow of oil phase during displacement, and the morphology and distribution of remaining oil after displacement. The cores with the same macroscopic porosity-permeability have great differences in microscopic heterogeneity of pore structure. Both macro porosity-permeability and micro heterogeneity of pore structure have an influence on the migration of oil phase and the morphology and distribution of remaining oil. When the heterogeneity is strong, the water phase will preferentially flow through the dominant paths and the remaining oil clusters will be formed in the small pores. The more the number of oil clusters(droplets) formed during displacement process, the smaller the average volume of cluster is, and the remaining oil is dominated by the cluster continuous phase with high saturation. The weaker the heterogeneity, the higher the pore sweep efficiency is, and the remaining oil clusters are mainly trapped in the form of non-continuous phase. The distribution and morphology of micro remaining oil are related to the absolute permeability, capillary number and micro-heterogeneity. So, the identification plate of microscopic residual oil continuity distribution established on this basis can describe the relationship between these three factors and distribution of remaining oil and identify the continuity of the remaining oil distribution accurately.展开更多
During the displacement of water plugging with binary flooding in internally heterogeneous reservoirs,it is essential to understand the distributions of remaining oil as well as the oil displacement mechanisms at diff...During the displacement of water plugging with binary flooding in internally heterogeneous reservoirs,it is essential to understand the distributions of remaining oil as well as the oil displacement mechanisms at different stages.In this study,two types of internally heterogeneous systems,i.e.,vertical and horizontal wells are investigated experimentally through a microscopic approach.The results show that plugging agent types have a greater impact on oil recovery than well types,and foam injection can enhance oil recovery more effectively than gel injection.Additionally,the injection sequence of plugging agents significantly affects oil displacement efficiency.Injecting gel after foam is more beneficial.According to the present results,the main formation mechanisms of remaining oil in each displacement stage are influenced by:capillary force,viscous force,inertial force,shear force,microscopic fingering&channeling.展开更多
Water alternating gas(WAG)injection is a widely used strategy for enhancing oil recovery(EOR)during gas flooding,and the mechanisms,operating parameters,and influencing factors of which have been extensively studied.H...Water alternating gas(WAG)injection is a widely used strategy for enhancing oil recovery(EOR)during gas flooding,and the mechanisms,operating parameters,and influencing factors of which have been extensively studied.However,with respect to its capacity in expanding macroscopic sweep volume under varying heterogeneities,the related results appear inadequate.In this research,three cores with different heterogeneities were used and flooded by the joint water and CO_(2) WAG,then the effects of heterogeneity on oil recovery were determined.More importantly,the cores after CO_(2) WAG injection were investigated using the nuclear magnetic resonance(NMR)technique for remaining oil distribution research,which could help us to understand the capacity of CO_(2) WAG in enlarging sweep volume at different heterogeneities.The results show that the presence of heterogeneity may largely weaken the effectiveness of water flooding,the more severe the heterogeneity,the worse the water flooding.The WAG injection of CO_(2) performs well in EOR after water flooding for all the cores with different heterogeneities;however,it could barely form a complete or full sweep throughout the low-permeability region,and un-swept bypassed regions remain.The homogeneous core is better developed by the injection of the joint water and CO_(2) WAG than the heterogeneous and fractured cases.展开更多
文摘Due to the continuous water percolation and soaking during development of the oilfields, the dynamic balance of a reservoir is altered by the fluid; and the rock framework, pores and throats will be reformed and destroyed. The interaction between the fluid and the rock leads to a series of micro geological processes, such as clastation, denudation, dissolution and deposition, in the small spaces connected by pores or throats, which control the accumulation and distribution of the remaining oil. These micro geological processes are the essential factors for the evolution of the reservoirs during development. This evolution makes the recovery of the remaining oil more complex.
文摘C oilfield is a heavy oil field developed by horizontal wells and single sand body in Bohai oilfield. The edge and bottom water of the reservoir is active and the natural energy development mode is adopted. The comprehensive water cut of the oilfield was 95.3%, which had entered the stage of high water cut oil production. Some reservoirs were limited by crude oil viscosity and oil column height. Under the condition of existing development well pattern, some reserves were not produced or the degree of production was low, and the degree of well control was not high, so there is room for tapping the potential of remaining oil. This paper studied the rising law of water ridge of horizontal wells in bottom water reservoir by reservoir engineering method, and guided the infilling limit of horizontal wells in bottom water reservoir. At the same time, combined with the research results of fine reservoir description, the geological model was established, the numerical simulation was carried out, and the distribution law of remaining oil was analyzed. Through this study, we could understand the law of water flooding and remaining oil in the high water cut period of bottom water heavy oil reservoir, so as to provide guidance for the development strategy of this type of reservoir in the high water cut period.
基金Supported by the China National Science and Technology Major Project(2017ZX05009-005)the National Natural Science Foundation of China(51674271)
文摘Waterflooding experiments were performed using Micro-CT on four cores of different pore structures from Donghe sandstone reservoirs in the Tarim Basin. The water, oil and grains were accurately separated by the advanced image processing technology, the pore network model was established, and parameters such as the number of throats and the throat size distribution were calculated to characterize the microscopic heterogeneity of pore structure, the flow of oil phase during displacement, and the morphology and distribution of remaining oil after displacement. The cores with the same macroscopic porosity-permeability have great differences in microscopic heterogeneity of pore structure. Both macro porosity-permeability and micro heterogeneity of pore structure have an influence on the migration of oil phase and the morphology and distribution of remaining oil. When the heterogeneity is strong, the water phase will preferentially flow through the dominant paths and the remaining oil clusters will be formed in the small pores. The more the number of oil clusters(droplets) formed during displacement process, the smaller the average volume of cluster is, and the remaining oil is dominated by the cluster continuous phase with high saturation. The weaker the heterogeneity, the higher the pore sweep efficiency is, and the remaining oil clusters are mainly trapped in the form of non-continuous phase. The distribution and morphology of micro remaining oil are related to the absolute permeability, capillary number and micro-heterogeneity. So, the identification plate of microscopic residual oil continuity distribution established on this basis can describe the relationship between these three factors and distribution of remaining oil and identify the continuity of the remaining oil distribution accurately.
文摘During the displacement of water plugging with binary flooding in internally heterogeneous reservoirs,it is essential to understand the distributions of remaining oil as well as the oil displacement mechanisms at different stages.In this study,two types of internally heterogeneous systems,i.e.,vertical and horizontal wells are investigated experimentally through a microscopic approach.The results show that plugging agent types have a greater impact on oil recovery than well types,and foam injection can enhance oil recovery more effectively than gel injection.Additionally,the injection sequence of plugging agents significantly affects oil displacement efficiency.Injecting gel after foam is more beneficial.According to the present results,the main formation mechanisms of remaining oil in each displacement stage are influenced by:capillary force,viscous force,inertial force,shear force,microscopic fingering&channeling.
基金Project(KFJJ-TZ-2019-3)supported by the Open Project of Shaanxi Key Laboratory of Advanced Stimulation Technology for Oil&Gas Reservoirs,ChinaProjects(51504275,51974344)supported by the National Natural Science Foundation of China。
文摘Water alternating gas(WAG)injection is a widely used strategy for enhancing oil recovery(EOR)during gas flooding,and the mechanisms,operating parameters,and influencing factors of which have been extensively studied.However,with respect to its capacity in expanding macroscopic sweep volume under varying heterogeneities,the related results appear inadequate.In this research,three cores with different heterogeneities were used and flooded by the joint water and CO_(2) WAG,then the effects of heterogeneity on oil recovery were determined.More importantly,the cores after CO_(2) WAG injection were investigated using the nuclear magnetic resonance(NMR)technique for remaining oil distribution research,which could help us to understand the capacity of CO_(2) WAG in enlarging sweep volume at different heterogeneities.The results show that the presence of heterogeneity may largely weaken the effectiveness of water flooding,the more severe the heterogeneity,the worse the water flooding.The WAG injection of CO_(2) performs well in EOR after water flooding for all the cores with different heterogeneities;however,it could barely form a complete or full sweep throughout the low-permeability region,and un-swept bypassed regions remain.The homogeneous core is better developed by the injection of the joint water and CO_(2) WAG than the heterogeneous and fractured cases.