期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Influence of Continental Atmospheric Forcing on the Decadal Variability of the West African Monsoon
1
作者 Adjoua Moïse Landry Famien Sandrine Djakouré +3 位作者 Bi Tra Jean Claude Youan Serge Janicot Abé Delfin Ochou Arona Diedhiou 《Atmospheric and Climate Sciences》 2024年第1期1-28,共28页
The West African Monsoon (WAM) is characterized by strong decadal and multi-decadal variability and the impacts can be catastrophic for the local populations. One of the factors put forward to explain this variability... The West African Monsoon (WAM) is characterized by strong decadal and multi-decadal variability and the impacts can be catastrophic for the local populations. One of the factors put forward to explain this variability involves the role of atmospheric dynamics, linked in particular to the Saharan Heat Low (SHL). This article addresses this question by comparing the sets of preindustrial control and historical simulation data from climate models carried out in the framework of the CMIP5 project and observations data over the 20<sup>th</sup> century. Through multivariate statistical analyses, it was established that decadal modes of ocean variability and decadal variability of Saharan atmospheric dynamics significantly influence decadal variability of monsoon precipitation. These results also suggest the existence of external anthropogenic forcing, which is superimposed on the decadal natural variability inducing an intensification of the signal in the historical simulations compared to preindustrial control simulations. We have also shown that decadal rainfall variability in the Sahel, once the influence of oceanic modes has been eliminated, appears to be driven mainly by the activity of the Arabian Heat Low (AHL) in the central Sahel, and by the structure of the meridional temperature gradient over the inter-tropical Atlantic in the western Sahel. 展开更多
关键词 Influence of Continental Atmospheric Forcing on the Decadal Variability of the west african monsoon
下载PDF
Study of Aerosol Direct and Indirect Effects and Auto-conversion Processes over the West African Monsoon Region Using a Regional Climate Model
2
作者 Zeinab SALAH Ahmed SHALABY +3 位作者 Allison L. STEINER Ashraf S. ZAKEY Ritesh GAUTAM Mohamed M. ABDEL WAHAB 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2018年第2期182-194,共13页
This study assesses the direct and indirect effects of natural and anthropogenic aerosols (e.g., black carbon and sulfate) over West and Central Africa during the West African monsoon (WAM) period (June-July-Aug... This study assesses the direct and indirect effects of natural and anthropogenic aerosols (e.g., black carbon and sulfate) over West and Central Africa during the West African monsoon (WAM) period (June-July-August). We investigate the impacts of aerosols on the amount of cloudiness, the influences on the precipitation efficiency of clouds, and the associated radiative forcing (direct and indirect). Our study includes the implementation of three new formulations of auto-conversion parameterization [namely, the Beheng (BH), Tripoli and Cotton (TC) and Liu and Daum (R6) schemes] in RegCM4.4.1, besides the default model's auto-conversion scheme (Kessler). Among the new schemes, BH reduces the precipitation wet bias by more than 50% over West Africa and achieves a bias reduction of around 25% over Central Africa. Results from detailed sensitivity experiments suggest a significant path forward in terms of addressing the long-standing issue of the characteristic wet bias in RegCM. In terms of aerosol-induced radiative forcing, the impact of the various schemes is found to vary considerably (ranging from -5 to -25 W m-2). 展开更多
关键词 aerosol cloud west african monsoon auto-conversion REGCM
下载PDF
Anomalous Atmospheric Circulation Associated with Recent West African Monsoon Rainfall Variability
3
作者 Ugochukwu K. Okoro Wen Chen +1 位作者 Chidiezie Chineke Okey Nwofor 《Journal of Geoscience and Environment Protection》 2017年第12期1-27,共27页
The recent West African Monsoon (WAM) wet season (May to October) rainfall’s interannual variability has been examined with emphasis on the rainfall zones of Guinea Coast (GC), Western Sudano Sahel (WSS) and Eastern ... The recent West African Monsoon (WAM) wet season (May to October) rainfall’s interannual variability has been examined with emphasis on the rainfall zones of Guinea Coast (GC), Western Sudano Sahel (WSS) and Eastern Sudano Sahel (ESS) in wet and dry years. Rainfall observations from Climate Research Unit (CRU) and Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP), and atmospheric circulation fields from National Center for Environmental Prediction (NCEP) were evaluated from 1979 to 2014. The objectives are to evaluate the trends across the zones and their linear relationship with the identified oceanic pulsations, as well as examine the evolution of the anomalous atmospheric circulation associated with the wet and dry years during the wet season months. The results show remarkable variability across the rainfall zones. The areal averaged rainfall anomalies show significant correlation values of -0.2 with Ocean Nino Index (ONI) only on WSS and ESS respectively, whereas with South Atlantic Ocean Dipole Index (SAODI) it shows significant correlation value of 0.3 only on GC, at 95% Confidence Level from a t-test. The analysis of trends in spatial and temporal patterns of the atmospheric circulation fields has extensively presented attributes associated with the wet seasonal rainfall anomalies in the wet and dry years. FGOALS-s2 model showed an outstanding simulation of the spatial and temporal patterns of these attributes, with the discrepancies noted, hence presenting itself as a viable tool in the prediction of seasonal rainfall extremes over West Africa. 展开更多
关键词 west african monsoon Wet SEASON RAINFALL Variability Atmospheric Circulation
下载PDF
Could ERA5 Deliver Better Climate Services Than ERA-Interim over the West African Sahel Region?
4
作者 Mahamane Rabilou Iro Ousmane Inoussa Abdou Saley +5 位作者 Saidou Chaibou Abdoul Aziz Mounkaila Saley Moussa Kone Diakaria Ibrah Seidou Sanda Manga Ousmane Adamou Dungall Laouali 《Journal of Environmental Science and Engineering(B)》 CAS 2024年第4期144-158,共15页
Our paper assessed the improvement performance of the reanalysis(ERA5)compared to ERAI(ERA-Interim)both from the ECMWF(European Center for Medium-Range Weather Forecast)in representing the WAM(West African Monsoon)dyn... Our paper assessed the improvement performance of the reanalysis(ERA5)compared to ERAI(ERA-Interim)both from the ECMWF(European Center for Medium-Range Weather Forecast)in representing the WAM(West African Monsoon)dynamic.Our aim is to evaluate the reliability of ERA5 to deliver better climate services than ERAI in the West African Sahel region.Two complementary observational databases namely the CRU(Climate Research Unit)and the GPCC(Global Precipitation Climatology Center)data are used to evaluate precipitation and temperature representation by the two reanalysis.Otherwise,the representation of some major features of the WAM system,such as the SHL(Saharan Heat Low),the AEJ/TEJ(African and Tropical Easterly Jets)was assessed using the two reanalysis data.The obtained results show a better representation of the seasonal accumulated precipitation and average temperature by ERA5 compared to ERAI with higher spatial correlation and lower bias relative to the observations.Furthermore,ERAI appears to be rainier than ERA5 but ERA5 produces more heavy rainfall days.During the period of intense monsoon,the frequency of the SHL is higher for ERAI which would favor intensification of monsoon inflow and depth.The lower SHL frequency observed in the ERA5 could explain the observed weakening intensity of AEJ which is favorable for moist conditions over the Sahel.These findings confirm the progress made by ERA5 compared to ERAI in representing the WAM dynamic and demonstrate its reliability for delivering better climate services over the West African Sahel. 展开更多
关键词 ERA5 ERAI west african monsoon System SAHEL SHL
下载PDF
Sensitivity Study of the RegCM4’s Surface Schemes in the Simulations of West Africa Climate
5
作者 Adjon Anderson Kouassi Brahima Kone +5 位作者 Siélé Silue Alima Dajuma Toure E. N’datchoh Marcellin Adon Arona Diedhiou Véronique Yoboue 《Atmospheric and Climate Sciences》 2022年第1期86-104,共19页
Two simulations of five years (2003-2007) were conducted with the Regional Climate models RegCM4, one coupled with Land surface models BATS and the other with CLM4.5 over West Africa, where simulated air temperature a... Two simulations of five years (2003-2007) were conducted with the Regional Climate models RegCM4, one coupled with Land surface models BATS and the other with CLM4.5 over West Africa, where simulated air temperature and precipitation were analyzed. The purpose of this study is to assess the performance of RegCM4 coupled with the new CLM4.5 Land</span><span style="font-family:""> </span><span style="font-family:Verdana;">surface scheme and the standard one named BATS in order to find the best configuration of RegCM4 over West African. This study could improve our understanding of the sensitivity of land surface model in West Africa climate simulation, and provide relevant information to RegCM4 users. The results show fairly realistic restitution of West Africa’s climatology and indicate correlations of 0.60 to 0.82 between the simulated fields (BATS and CLM4.5) for precipitation. The substitution of BATS surface scheme by CLM4.5 in the model configuration, leads mainly to an improvement of precipitation over the Atlantic Ocean, however, the impact is not sufficiently noticeable over the continent. While the CLM4.5 experiment restores the seasonal cycles and spatial distribution, the biases increase for precipitation and temperature. Positive biases already existing with BATS are amplified over some sub-regions. This study concludes that temporal localization (seasonal effect), spatial distribution (grid points) and magnitude of precipitation and temperature (bias) are not simultaneously improved by CLM4.5. The introduction of the new land surface scheme CLM4.5, therefore, leads to a performance of the same order as that of BATS, albeit with a more detailed formulation. 展开更多
关键词 Regional Climate Model Land Surface Scheme west Africa Climate REGCM Precipitation west african monsoon Simulated Data
下载PDF
夏季青藏高原上空热力异常与其上下游大气环流联系的研究进展 被引量:5
6
作者 刘舸 赵平 +2 位作者 南素兰 陈军明 王慧美 《气象学报》 CAS CSCD 北大核心 2018年第6期861-869,共9页
围绕夏季青藏高原热力异常与其上、下游大气环流在年际尺度变化上的联系,对最新的研究成果做了简要介绍。通过观测资料分析与数值试验,指出在年际尺度上夏季青藏高原热力异常与同期亚洲-太平洋涛动(APO)具有显著且稳定的联系,前者可能... 围绕夏季青藏高原热力异常与其上、下游大气环流在年际尺度变化上的联系,对最新的研究成果做了简要介绍。通过观测资料分析与数值试验,指出在年际尺度上夏季青藏高原热力异常与同期亚洲-太平洋涛动(APO)具有显著且稳定的联系,前者可能通过调节亚洲和中东太平洋热带外大尺度垂直环流异常影响后者。另外,夏季青藏高原热力异常对高原上空及更大范围上对流层温度的年际变化也有一定贡献,进而通过对上游大尺度环流的调节作用影响到同期西非萨赫勒地区的降水。夏季青藏高原热力异常只是导致其上、下游大气环流年际变化的一个原因,其他影响效应尚需进一步探讨。 展开更多
关键词 亚洲-太平洋涛动 青藏高原 数值模拟 萨赫勒 西非季风降水
下载PDF
On the Causes of the Minor Dry Season over the Coastal Region of the Northern Gulf of Guinea 被引量:1
7
作者 Angora Aman Elisee Toualy Fidele Yoroba 《Atmospheric and Climate Sciences》 2018年第2期121-133,共13页
Along the littoral shelf of northern coast of the Gulf of Guinea (GG), a minor dry season of the rainfall regime is concomitantly observed with the occurrence of a major coastal upwelling in July-August-September (JAS... Along the littoral shelf of northern coast of the Gulf of Guinea (GG), a minor dry season of the rainfall regime is concomitantly observed with the occurrence of a major coastal upwelling in July-August-September (JAS). It was then supposed that this upwelling drives that minor dry season. But no previous studies have tried to understand this minor dry season and, this study is the first focusing on this question. The investigations undertaken to explain this dry season on the Ivorian littoral shelf with the ERA-Interim data from the European Centre for Medium Range Weather Forecasts over the 1980-2016 period have shown that the minor dry season is driven by the Northward migration of the Inter Tropical Convergence Zone (ITCZ) during this period and, enhanced by the occurrence of the major coastal upwelling of the northern GG at the same time. These two phenomena interact as follow: i) the ITCZ is located in JAS far in the north cutting off convective processes along the coast, ii) the air on the coastal region is poor in humidity, iii) the air temperature on the bordering region of the GG is cooled by the coastal upwelling to value less than 26°C and not favorable for providing convection. 展开更多
关键词 Dry Season west african monsoon GULF of GUINEA Coastal UPWELLING CONVECTIVE Rainfall
下载PDF
Influence of Sea Level Pressure on Inter-Annual Rainfall Variability in Northern Senegal in the Context of Climate Change
8
作者 Aichetou Dia-Diop Malick Wade +4 位作者 Sinclaire Zebaze Abdoulaye Bouya Diop Eric Efon Andre Lenouo Bouya Diop 《Atmospheric and Climate Sciences》 2022年第1期113-131,共19页
This study examines the inter-annual variability of rainfall and Mean Sea Level Pressure (</span><span style="font-family:Verdana;">M</span><span style="font-family:Verdana;"&g... This study examines the inter-annual variability of rainfall and Mean Sea Level Pressure (</span><span style="font-family:Verdana;">M</span><span style="font-family:Verdana;">SLP) over west Africa based on analysis of the Global Precipitation</span><span style="font-family:""><span style="font-family:Verdana;"> Climatology Project (GPCP) and National Center for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) Reanalysis respectively. An interconnection is found in this region, between Mean Sea Level Pressure (MSLP) anomaly (over Azores and St. Helena High) and monthly mean precipitation during summer (June to September: JJAS). We also found that over northern Senegal (15</span><span style="white-space:nowrap;font-family:Verdana;">&#176;</span><span style="font-family:Verdana;">N</span></span><span style="font-family:""> </span><span style="font-family:Verdana;">-</span><span style="font-family:""> </span><span style="font-family:""><span style="font-family:Verdana;">17</span><span style="white-space:nowrap;font-family:Verdana;">&#176;</span><span style="font-family:Verdana;">N;17</span><span style="white-space:nowrap;font-family:Verdana;">&#176;</span><span style="font-family:Verdana;">W</span></span><span style="font-family:""> </span><span style="font-family:Verdana;">-</span><span style="font-family:""> </span><span style="font-family:""><span style="font-family:Verdana;">13</span><span style="white-space:nowrap;font-family:Verdana;">&#176;</span><span style="font-family:Verdana;"></span><span style="font-family:Verdana;">W) the SLP to the north is strong;the wind converges at 200</span></span><span style="font-family:""> </span><span style="font-family:Verdana;">hPa corresponding to the position of the African Easterly Jet (AEJ) the rotational wind 700</span><span style="font-family:""> </span><span style="font-family:""><span style="font-family:Verdana;">hPa (corresponding to the position of the African Easterly Jet (AEJ) coming from the north-east is negative. In this region, the precipitation is related to the SLP to the north with the opposite sign. The Empirical Orthogonal Functions (EOF) of SLP is also presented, including the mean spectrum of precipitation and pressures to the north (15</span><span style="white-space:nowrap;font-family:Verdana;">&#176;</span><span style="font-family:Verdana;">N</span></span><span style="font-family:""> </span><span style="font-family:Verdana;">-</span><span style="font-family:""> </span><span style="font-family:""><span style="font-family:Verdana;">40</span><span style="white-space:nowrap;font-family:Verdana;">&#176;</span><span style="font-family:Verdana;">N and 50</span><span style="white-space:nowrap;font-family:Verdana;">&#176;</span><span style="font-family:Verdana;">W</span></span><span style="font-family:""> </span><span style="font-family:Verdana;">-</span><span style="font-family:""> </span><span style="font-family:""><span style="font-family:Verdana;">25</span><span style="white-space:nowrap;font-family:Verdana;">&#176;</span><span style="font-family:Verdana;">W) and south (40</span><span style="white-space:nowrap;font-family:Verdana;">&#176;</span><span style="font-family:Verdana;">S</span></span><span style="font-family:""> </span><span style="font-family:Verdana;">-</span><span style="font-family:""> </span><span style="font-family:""><span style="font-family:Verdana;">10</span><span style="white-space:nowrap;font-family:Verdana;">&#176;</span><span style="font-family:Verdana;">S and 40</span><span style="white-space:nowrap;font-family:Verdana;">&#176;</span><span style="font-family:Verdana;">W</span></span><span style="font-family:""> </span><span style="font-family:Verdana;">-</span><span style="font-family:""> </span><span style="font-family:""><span style="font-family:Verdana;">0</span><span style="white-space:nowrap;font-family:Verdana;">&#176;</span><span style="font-family:Verdana;">E). The dominant EOF of Sea Level Pressures north and south of the Atlantic Ocean for GPCP represents about 62.2% and 69.4% of the variance, respectively. The second and third EOFs of the pressure to the north account for 24.0% and 6.5% respectively. The second and third EOFs of the pressure to the south represent 12.5% and 8.9% respectively. Wet years in the north of Senegal were associated with anomalous low-pressure areas over the north Atlantic Ocean as opposed to the dry years which exhibited an anomalous high-pressure area in the same region. On the other hand, over the South Atlantic, an opposition is noted. The wavelet analysis method is applied to the SLP showings to the north, south and precipitation in our study area. The indices prove to be very consistent, especially during intervals of high variance. 展开更多
关键词 Global Precipitation Climatology Project (GPCP) west Africa monsoon Inter-Tropical Convergence Zone african Easterly Jet (AEJ) Tropical Easterly Jet (TEJ) Sea Level Pressure (SLP)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部