Sandy desertification is land degradation characterized by wind erosionmainly resulted from the excessive human activities in arid, semiarid and part of sub-humid regionsin northern China, The research on sandy desert...Sandy desertification is land degradation characterized by wind erosionmainly resulted from the excessive human activities in arid, semiarid and part of sub-humid regionsin northern China, The research on sandy desertification has experienced more than 5 decades ofarduous course of the struggle along with the establishment and development of China's desertscience. Researches in this field have made a great contribution to the national economicconstruction, and environmental protection. This paper focuses on presenting the major progress andachievements in the sandy desertification research during the last 50 years, including the stages ofstudy on sandy desertification, background environment of sandy desertification and its changes,the conception, causes, process, monitoring and assessment of sandy desertification, the vegetationsuccession, landscape ecology, plant physiology, impacts on ecosystem, high-effective use of waterand land resources and sustainable development in sandy desertified regions, sandy desertificationcontrol models and techniques etc.展开更多
The Lower Cretaceous strata in the Kuqa Basin in Xinjiang are marked by a set of arid red beds. Several types of sedimentary fades can be identified in this set of arid red beds: mudstones of the plaza and intracontin...The Lower Cretaceous strata in the Kuqa Basin in Xinjiang are marked by a set of arid red beds. Several types of sedimentary fades can be identified in this set of arid red beds: mudstones of the plaza and intracontinental sebkha, aeolian sandstones, sandy conglomerates of the intermittent river, conglomerates of the pluvial fan, etc. These types of sedimentary facies constitute a typical desert system. Therefore, the Cretaceous strata in the Kuqa Basin provide a favorable condition for studies of sequence stratigraphic divisions of the desert system. With the rise and fall of the base level of the sedimentary basin, cyclicity is clearly revealed in stratigraphic records, which helps the identification of the third-order sequences. Based on the cyclicity in stratigraphic records, 5 third-order sequences can be found in the strata of the Early Cretaceous in the Kuqa Basin. These sequences comprise a second-order tectonic sequence. The primary feature of these third-order sequences is of an upward-fining sedimentary succession formed by a succession of 'coarse sediments of the alluvial system-fine sediments of the lake system'. The result of this study shows that aeolian sandstones are the best reservoirs of natural gas in the Cretaceous strata in the Kuqa Basin, and that the Kela-2 gas field is the first large gas field dominated by aeolian sandstone reservoirs in China.展开更多
In this study, the remote sensing is applied to the examination of the relationship between desertification and normalized difference vegetation index (NDVI) in the context of northern Shaanxi Province. This relations...In this study, the remote sensing is applied to the examination of the relationship between desertification and normalized difference vegetation index (NDVI) in the context of northern Shaanxi Province. This relationship is also examined using spatial analysis methods. A strong negative correlation is found in the largest area desert, indicating that the relationship between desert and NDVI is not a simple linear one and that the correlation coefficient between NDVI and vegetation abundance is significant. The normalized difference vegetation index (NDVI) was compared with other vegetation index-based methodologies. NDVI is a valuable first-cut indicator for such systems, although the analysis and interpretation of its relationship to desertification are complex and also based on the detailed analysis of its relationship to ecological zone, vegetation type and season. Conclusions thus made would help to upgrade the methodology as an effective tool for early-warning desertification in the northern Shaanxi Province where a drought is a recurring threat. This methodology includes the integration of NDVI with other socio-economic and bio-physical indicators in CIS, the complementation of desert area data with satellite data, and the analysis of the relationship between NDVI and specific climatic zones, for each season and vegetation type.展开更多
To investigate allelopathy of plants in desert ecosystems, related research achievements obtained in recent years, reported allelopathic plants, allelochemicals and releasing ways of alleochemicalds were summarized, a...To investigate allelopathy of plants in desert ecosystems, related research achievements obtained in recent years, reported allelopathic plants, allelochemicals and releasing ways of alleochemicalds were summarized, and then the key problems of research into allelopathic plants in desert ecosystems were indicated. It was considered that the research of allelopathy of plants in desert regions has just started in China, and plants with atlelopathic potential were found in the Compositae, Leguminosae, Rosaceae, Scrophulariaceae and Gramineae; plants in desert regions re- lease allelochemicals mainly via natural volatilization, which is closely related to their growing environment; allelochemicals such as alkaloids, fla- vonoids, terpenoids have been identified. This study can provide theoretical basis and practical value for reasonable adoption of protection meas- ures of desert plants and comprehensive control of desertification.展开更多
Three hundred and ninety five residents in a desert area were examined with chest radiographs and 28 cases with siliceous pneumoconiosis were found. The prevalence of siliceous pneumoconiosis was 7.09%, and that over ...Three hundred and ninety five residents in a desert area were examined with chest radiographs and 28 cases with siliceous pneumoconiosis were found. The prevalence of siliceous pneumoconiosis was 7.09%, and that over 40 years of age was 21%. The histological findings of lungs from a camel living in that area for 20 years also confirmed to have siliceous pneumoconiosis.展开更多
This paper, by applying the theories of landscape ecology, illustrates the role and mechanism of windbreak system in the establishment and maintenance of oasis ecosystem on the basis of systematic analysis of characte...This paper, by applying the theories of landscape ecology, illustrates the role and mechanism of windbreak system in the establishment and maintenance of oasis ecosystem on the basis of systematic analysis of characteristics and ecological crises of China's desert, and especially of desert zone in western China. Furthermore, direct economic benefits are summarized.展开更多
Desertification is a global phenomenon that affects about two billion people. It occurs in arid zones where the annual precipitation is below 400 mm, partic- ularly in the marginal areas of the world's largest desert...Desertification is a global phenomenon that affects about two billion people. It occurs in arid zones where the annual precipitation is below 400 mm, partic- ularly in the marginal areas of the world's largest deserts. It is a result of water and wind erosion, over- grazing, global warm-ing, improper soil cultivation, and increased pressure ot population growth, and it causes degradation of soil and natural and agricultural vegetation. The direct result is less food for people and livestock, which influences pop- ulation and animal husbandry fluctuations. Despite ef- forts to combat and reduce desertification, the affected areas are annually increasing.展开更多
From October 26th to 27th, 2018, the Academic Workshop on Ecological Civilization and Green Development in Sandy Area, co-sponsored by China Society of Desert in the Geographical Society of China, Northwest Institute ...From October 26th to 27th, 2018, the Academic Workshop on Ecological Civilization and Green Development in Sandy Area, co-sponsored by China Society of Desert in the Geographical Society of China, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences (CAS), Key Laboratory of Desert and Desertification, CAS, Key Laboratory of Eco-hydrology of Inland River Basin, CAS, Shapotou Desert Research and Experiment Station,Naiman Desertification Research Station and Linze Inland River Basin Research Station, was successfully held in Changsha, Hunan Province.展开更多
[Objective] The research aimed to study the groundwater environment related to vegetation in Mu Us Desert.[Method] Choosing the hinterland of Mu Us Desert,the relationship between vegetation and groundwater in the des...[Objective] The research aimed to study the groundwater environment related to vegetation in Mu Us Desert.[Method] Choosing the hinterland of Mu Us Desert,the relationship between vegetation and groundwater in the desert was studied.The indicator system for the relationship between vegetation and groundwater in the sandy area was established,including vegetation population,vegetation cover,groundwater depth,vadose zone moisture content,groundwater mineralization and vadose zone salinity,as well as the corresponding field work methods.[Result] The result showed that the nine primary vegetation populations were distributed in the study area,and Artemisia,Salix and Cares were the dominant vegetation species.The groundwater mineralization in the sand dunes was 100-300mg/L,and 800mg/L in the beach,vadose zone moisture content remained at 8%-16%.The dunes salinity was less than 0.2%,and beaches were higher than 0.3%.[Conclusion] These results provided a basis for study on the relationship between vegetation and groundwater in Mu Us Desert.展开更多
Thornthwaite Memorial model and other statistic methods were used to calculate the climate-productivity of plants with the meteorological data from 1961 to 2007 at 9 stations distributed on Inner Mongolia desert stepp...Thornthwaite Memorial model and other statistic methods were used to calculate the climate-productivity of plants with the meteorological data from 1961 to 2007 at 9 stations distributed on Inner Mongolia desert steppe.The spatial and temporal variation characteristics of climate-productivity were analyzed by using the methods of the tendency rate of the climate trend,accumulative anomaly,and spatial difference and so on.The results showed that the climate-productivity kept linear increased trend over Inner Mongolia desert steppe in recent 47 years,but not significant.In spatial distribution,the climate-productivity reduced with the increased latitude.The climate-productivity in southwest part of Inner Mongolia desert steppe was growing while that in the southeast was reducing.The variation rate of the climate-productivity increased from the northwest part to the southeast part of Inner Mongolia desert steppe.In recent 47 years,the climate-productivity in southeast Jurh underwent the greatest decreasing extent,and the region was the sensitive area of the climate-productivity variation.展开更多
Net photosynthesis ( P n ), transpiration ( E ), stomatal conductance ( g s) and water use efficiency (WUE) of more than 218 species belonging to two different reproductive functional types, i.e. clonal (115 ...Net photosynthesis ( P n ), transpiration ( E ), stomatal conductance ( g s) and water use efficiency (WUE) of more than 218 species belonging to two different reproductive functional types, i.e. clonal (115 species) and non_clonal species (103 species), along the 1 670 km Northeast China Transect (NECT) were analyzed. The results showed that P n and WUE appeared to be lower in the east and west ends of NECT, with peaks in the middle. Transpiration was found to be higher in the west end, where most temperate desert species were distributed. On the same site, most clonal species showed higher P n and related physiological variables than non_clonal species. For different growth forms over NECT, e.g. forest trees, shrubs and grasses, meadow steppe shrubs and grasses, typical steppe shrubs and grasses, the meadow steppe and typical steppe grasses, showed higher values of physiological variables than the forest or the desert species. But for the two reproductive plant functional types (PFTs), clonal species had higher physiological variables, with averages of 22%, 15%, 23% and 14% higher than the non_clonal ones for P n , E, g s, and WUE, respectively. Such differences indicated that clonal species might have advantages over non_clonal species in utilizing environmental resources such as light, CO 2, and especially water.展开更多
The aerosol optical properties and direct radiative forcing over the Mu Us desert of northern China, acquired through a CE318 sunphotometer of the ground-based Aerosol Robotic Network (AERONET), are analyzed. The se...The aerosol optical properties and direct radiative forcing over the Mu Us desert of northern China, acquired through a CE318 sunphotometer of the ground-based Aerosol Robotic Network (AERONET), are analyzed. The seasonal variations in the aerosol optical properties are examined. The effect of meteorological elements (pressure, temperature, water vapor pressure, relative humidity and wind speed) on the aerosol optical properties is also studied. Then, the sources and optical properties under two different cases, a dust event and a pollution event, are compared. The results show that the high aerosol optical depth (AOD) found in Yulin was mostly attributed to the occurrence of dust events in spring from the Mu Us desert and deserts of West China and Mongolia, as well as the impacts of anthropogenic pollutant particles from the middle part of China in the other seasons. The seasonal variation and the probability distribution of the radiative forcing and the radiative forcing efficiency at the surface and the top of the atmosphere are analyzed and regressed using the linear and Gaussian regression methods.展开更多
Distribution of rainfall event sizes and interval lengths between events are important characteristics of arid and semi-arid climates. Understanding their importance will contribute to our ability to understand ecosys...Distribution of rainfall event sizes and interval lengths between events are important characteristics of arid and semi-arid climates. Understanding their importance will contribute to our ability to understand ecosystem dynamics in these regions. Rainfall event timing and magnitude are important drivers of ecosystem processes and are instrumental in creating land-scape heterogeneity in arid and semi-arid regions. Rainfall event characteristics were analyzed using an automatic tip-ping-bucket rain-gauge record across the entire summer monsoon season from 2008 to 2015 at the arid desert area of Shapotou in the Tengger Desert, China. Changing the minimum inter-event time (MIT) from 30 min to 24 h alters the number of rainfall events from 64 to 25 for the event depth larger than 0.1 mm. The mean rainfall intensity declined from 0.95 mm/h to 0.53 mm/h, and the geometric mean event duration rose from 0.55 h to 4.4 h. The number of rainfall events, mean rainfall intensity, and geometric mean event duration differed under different criteria of individual rainfall depths, except that for an individual rainfall depth of 0.5, 1.0, and 5.0 mm. The aforementioned features differed only at the lowest range of the mean rainfall intensity and depth for MIT=3 and 6 h. These findings suggest that identification of event-based rainfall in this specific arid region can be better achieved by setting the MIT at six hours. The wide variation in rainfall event properties indicate the need for paying more attention to the proper selection and reporting of event criteria in studies that adopt event-based data analysis. This is especially true in quantifying effective rainfall for soil water replenishment in terms of rainfall depth and intensity with infrequent rainfall events.展开更多
The Badain Jaran Desert is the third largest desert in China,covering an area of 50000 km2.It lies in Northwest China,where the arid and rainless natural environment has a great impact on the climate,environment,and h...The Badain Jaran Desert is the third largest desert in China,covering an area of 50000 km2.It lies in Northwest China,where the arid and rainless natural environment has a great impact on the climate,environment,and human living conditions.Based on the results of 1∶250000 regional hydrogeological surveys and previous researches,this study systematically investigates the circulation characteristics and resource properties of the groundwater as well as the evolution of the climate and ecological environment since the Quaternary in the Badain Jaran Desert by means of geophysical exploration,hydrogeological drilling,hydrogeochemistry,and isotopic tracing.The results are as follows.(1)The groundwater in the Badain Jaran Desert is mainly recharged through the infiltration of local precipitation and has poor renewability.The groundwater recharge in the desert was calculated to be 1.8684×10^(8)m^(3)/a using the water balance method.(2)The Badain Jaran Desert has experienced four humid stages since the Quaternary,namely MIS 13-15,MIS 5,MIS 3,and the Early‒Middle Holocene,but the climate in the desert has shown a trend towards aridity overall.The average annual temperature in the Badain Jaran Desert has significantly increased in the past 50 years.In detail,it has increased by about 2.5℃,with a higher rate in the south than in the north.Meanwhile,the precipitation amount has shown high spatial variability and the climate has shown a warming-drying trend in the past 50 years.(3)The lakes in the hinterland of the Badain Jaran Desert continuously shrank during 1973‒2015.However,the vegetation communities maintained a highly natural distribution during 2000‒2016,with the vegetation cover has increased overall.Accordingly,the Badain Jaran Desert did not show any notable expansion in that period.This study deepens the understanding of groundwater circulation and the climate and ecological evolution in the Badain Jaran Desert.It will provide a scientific basis for the rational exploitation of the groundwater resources and the ecological protection and restoration in the Badain Jaran Desert.展开更多
[Objective] The research aimed to study the resistance of four kinds of desert plants in Qinhai Lake area.[Method] By contrasting the resistance indexes of four kinds of plants which included Ephedra intermedia,Stelle...[Objective] The research aimed to study the resistance of four kinds of desert plants in Qinhai Lake area.[Method] By contrasting the resistance indexes of four kinds of plants which included Ephedra intermedia,Stellera chamaejasme,Achnatherum splendens and Xanthopappus subacaulis,the resistance of four kinds of plants in Qinghai Lake area was analyzed.The resistance indexes included the soluble protein,MDA,free Pro content and the activities of SOD,POD,CAT.Moreover,the resistance of four kinds of plants was evaluated comprehensively by using Fuzzy membership function method.[Result] Under the low-temperature and arid adversity in Qinghai Lake area,SOD activity presented as Stellera chamaejasme>Xanthopappus subacaulis>Ephedra intermedia>Achnatherum splendens,and CAT activity presented as Stellera chamaejasme>Xanthopappus subacaulis>Achnatherum splendens>Ephedra intermedia.Under the same high-salt environment,CAT activity of Stellera chamaejasme was eight times higher than that of Ephedra intermedia.It illustrated that the salt resistance of Stellera chamaejasme was stronger than that of Ephedra intermedia.The free Pro content showed as Xanthopappus subacaulis>Ephedra intermedia>Stellera chamaejasme>Achnatherum splendens.Under the same adversity,Pro content of Ephedra intermedia was 2.83 times of Stellera chamaejasme.It was because that MDA content in Stellera chamaejasme was the lowest,and the membranous peroxide harm was the smallest.It caused that Pro content (stress penetration material) was low.It also illustrated that the resistance of Stellera chamaejasme was stronger than that of Ephedra intermedia.The comprehensive evaluation of Fuzzy membership function showed that the resistance presented as Xanthopappus subacaulis>Stellera chamaejasme>Ephedra intermedia>Achnatherum splendens.[Conclusion] The research provided the theory basis for the breeding of drought-resistance new variety and the development of good germ plasm resource in Qinghai Lake area.展开更多
In the arid region of northwestern China(ARNC),water resources are the most critical factor restricting socioeconomic development and influencing the stability of the area’s ecological systems.The region’s complex w...In the arid region of northwestern China(ARNC),water resources are the most critical factor restricting socioeconomic development and influencing the stability of the area’s ecological systems.The region’s complex water system and unique hydrological cycle show distinctive characteristics.Moreover,the intensified hydrological cycle and extreme climatic and hydrological events resulting from global warming have led to increased uncertainty around water resources as well as heightened conflict between water supply and water demand.All of these factors are exerting growing pressures on the socioeconomic development and vulnerable ecological environment in the region.This research evaluates the impacts of climate change on water resources,hydrological processes,agricultural system,and desert ecosystems in the ARNC,and addresses some associated risks and challenges specific to this area.The temperature is rising at a rate of 0.31C per decade during 1961–2017 and hydrological processes are being significantly influenced by changes in glaciers,snow cover,and precipitation form,especially in the rivers recharged primarily by melt water.Ecosystems are also largely influenced by climate change,with the Normalized Difference Vegetation Index(NDVI)of natural vegetation exhibited an increasing trend prior to 1998,and then reversed in Xinjiang while the Hexi Corridor of Gansu showed the opposite trends.Furthermore,the desert-oasis transition zone showed a reduction in area due to the warming trend and the recent rapid expansion of irrigated area.Both the warming and intensified drought are threatening agriculture security.The present study could shed light on sustainable development in this region under climate change and provides scientific basis to the construction of the“Silk Road Economic Belt”.展开更多
The instability of climate in Minqin desert area during the process of global warming was analyzed based on meteorological data during 1961-2013. The results show that the instability of monthly average temperature in...The instability of climate in Minqin desert area during the process of global warming was analyzed based on meteorological data during 1961-2013. The results show that the instability of monthly average temperature in January and April increased. Isothermal date in February was 10.36 d earlier from 1961 to 2013. The instability of extreme maximum temperature in December and January enhanced. The instability of extreme minimum temperature in July increased. The coefficient of variation of extreme minimum temperature in May was up to 287.3%. The instability of average precipitation in January enhanced. At the same time,the stability of annual average precipitation increased. The stability of climate is more worthy of attention.展开更多
Soil organic carbon(SOC)is a critical variable used to determine the carbon balance.However,large uncertainties arise when predicting the SOC stock in soil profiles in Chinese grasslands,especially on desert rangeland...Soil organic carbon(SOC)is a critical variable used to determine the carbon balance.However,large uncertainties arise when predicting the SOC stock in soil profiles in Chinese grasslands,especially on desert rangelands.Recent studies have shown that desert ecosystems may be potential carbon sinks under global climate change.Because of the high spatial heterogeneity,time-consuming sampling methods,and difficult acquisition process,the relationships the SOC storage and distribution have with driving factors in desert rangelands remain poorly understood.Here,we investigated and developed an SOC database from 3162 soil samples(collected at depths of 0−10 cm and 10−20 cm)across 527 sites,as well as the climate conditions,vegetation types,and edaphic factors associated with the sampling sites in the desert rangelands of northern Xinjiang,north-west China.This study aims to determine the SOC magnitude and drivers in desert rangelands.Our findings demonstrate that the SOC and SOC density(SOCD)were 0.05−37.13 g·kg^(-1)and 19.23−9740.62 g·m^(-2),respectively,with average values of 6.81±5.31 g·kg^(-1)and 1670.38±1202.52 g·m^(-2),respectively.The spatial distributions of SOC and SOCD all showed gradually decreasing trends from south-west to north-east.High-SOC areas were mainly distributed in the piedmont lowlands of the Ili valley,while low-SOC regions were mainly concentrated in the north-west area of Altay.The redundancy analysis results revealed that all environmental factors accounted for approximately 37.6%of the spatial variability in SOC;climate factors,vegetation factors,and soil properties explained 15.0%,1.7%,and 12.3%,respectively.The structural equation model(SEM)further indicated that evapotranspiration,average annual precipitation,and the SWC were the dominant factors affecting SOC accumulation,mainly through direct effects,although indirect effects were also delivered by the vegetation factors.Taken together,the results obtained herein updated the SOC data pool available for desert rangelands and clarified the main driving factors of SOC variations.This study provided supporting data for the sustainable use and management of desert rangelands and the global ecosystem carbon budget.展开更多
文摘Sandy desertification is land degradation characterized by wind erosionmainly resulted from the excessive human activities in arid, semiarid and part of sub-humid regionsin northern China, The research on sandy desertification has experienced more than 5 decades ofarduous course of the struggle along with the establishment and development of China's desertscience. Researches in this field have made a great contribution to the national economicconstruction, and environmental protection. This paper focuses on presenting the major progress andachievements in the sandy desertification research during the last 50 years, including the stages ofstudy on sandy desertification, background environment of sandy desertification and its changes,the conception, causes, process, monitoring and assessment of sandy desertification, the vegetationsuccession, landscape ecology, plant physiology, impacts on ecosystem, high-effective use of waterand land resources and sustainable development in sandy desertified regions, sandy desertificationcontrol models and techniques etc.
基金This study was supported by the Ministry of Sciences and Technology of China(2001CB209100),
文摘The Lower Cretaceous strata in the Kuqa Basin in Xinjiang are marked by a set of arid red beds. Several types of sedimentary fades can be identified in this set of arid red beds: mudstones of the plaza and intracontinental sebkha, aeolian sandstones, sandy conglomerates of the intermittent river, conglomerates of the pluvial fan, etc. These types of sedimentary facies constitute a typical desert system. Therefore, the Cretaceous strata in the Kuqa Basin provide a favorable condition for studies of sequence stratigraphic divisions of the desert system. With the rise and fall of the base level of the sedimentary basin, cyclicity is clearly revealed in stratigraphic records, which helps the identification of the third-order sequences. Based on the cyclicity in stratigraphic records, 5 third-order sequences can be found in the strata of the Early Cretaceous in the Kuqa Basin. These sequences comprise a second-order tectonic sequence. The primary feature of these third-order sequences is of an upward-fining sedimentary succession formed by a succession of 'coarse sediments of the alluvial system-fine sediments of the lake system'. The result of this study shows that aeolian sandstones are the best reservoirs of natural gas in the Cretaceous strata in the Kuqa Basin, and that the Kela-2 gas field is the first large gas field dominated by aeolian sandstone reservoirs in China.
文摘In this study, the remote sensing is applied to the examination of the relationship between desertification and normalized difference vegetation index (NDVI) in the context of northern Shaanxi Province. This relationship is also examined using spatial analysis methods. A strong negative correlation is found in the largest area desert, indicating that the relationship between desert and NDVI is not a simple linear one and that the correlation coefficient between NDVI and vegetation abundance is significant. The normalized difference vegetation index (NDVI) was compared with other vegetation index-based methodologies. NDVI is a valuable first-cut indicator for such systems, although the analysis and interpretation of its relationship to desertification are complex and also based on the detailed analysis of its relationship to ecological zone, vegetation type and season. Conclusions thus made would help to upgrade the methodology as an effective tool for early-warning desertification in the northern Shaanxi Province where a drought is a recurring threat. This methodology includes the integration of NDVI with other socio-economic and bio-physical indicators in CIS, the complementation of desert area data with satellite data, and the analysis of the relationship between NDVI and specific climatic zones, for each season and vegetation type.
基金Supported by the National Natural Science Foundation of China(41161006,41161049,31100519,31460224,31460069)
文摘To investigate allelopathy of plants in desert ecosystems, related research achievements obtained in recent years, reported allelopathic plants, allelochemicals and releasing ways of alleochemicalds were summarized, and then the key problems of research into allelopathic plants in desert ecosystems were indicated. It was considered that the research of allelopathy of plants in desert regions has just started in China, and plants with atlelopathic potential were found in the Compositae, Leguminosae, Rosaceae, Scrophulariaceae and Gramineae; plants in desert regions re- lease allelochemicals mainly via natural volatilization, which is closely related to their growing environment; allelochemicals such as alkaloids, fla- vonoids, terpenoids have been identified. This study can provide theoretical basis and practical value for reasonable adoption of protection meas- ures of desert plants and comprehensive control of desertification.
文摘Three hundred and ninety five residents in a desert area were examined with chest radiographs and 28 cases with siliceous pneumoconiosis were found. The prevalence of siliceous pneumoconiosis was 7.09%, and that over 40 years of age was 21%. The histological findings of lungs from a camel living in that area for 20 years also confirmed to have siliceous pneumoconiosis.
文摘This paper, by applying the theories of landscape ecology, illustrates the role and mechanism of windbreak system in the establishment and maintenance of oasis ecosystem on the basis of systematic analysis of characteristics and ecological crises of China's desert, and especially of desert zone in western China. Furthermore, direct economic benefits are summarized.
文摘Desertification is a global phenomenon that affects about two billion people. It occurs in arid zones where the annual precipitation is below 400 mm, partic- ularly in the marginal areas of the world's largest deserts. It is a result of water and wind erosion, over- grazing, global warm-ing, improper soil cultivation, and increased pressure ot population growth, and it causes degradation of soil and natural and agricultural vegetation. The direct result is less food for people and livestock, which influences pop- ulation and animal husbandry fluctuations. Despite ef- forts to combat and reduce desertification, the affected areas are annually increasing.
文摘From October 26th to 27th, 2018, the Academic Workshop on Ecological Civilization and Green Development in Sandy Area, co-sponsored by China Society of Desert in the Geographical Society of China, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences (CAS), Key Laboratory of Desert and Desertification, CAS, Key Laboratory of Eco-hydrology of Inland River Basin, CAS, Shapotou Desert Research and Experiment Station,Naiman Desertification Research Station and Linze Inland River Basin Research Station, was successfully held in Changsha, Hunan Province.
基金Supported by The Key Grant Project of Chinese Ministry of Education(308021)Program for Changjiang Scholars and Innovative Research Team in University (IRT0811)Geological Survey Project of China Geological Survey (1212010331302)
文摘[Objective] The research aimed to study the groundwater environment related to vegetation in Mu Us Desert.[Method] Choosing the hinterland of Mu Us Desert,the relationship between vegetation and groundwater in the desert was studied.The indicator system for the relationship between vegetation and groundwater in the sandy area was established,including vegetation population,vegetation cover,groundwater depth,vadose zone moisture content,groundwater mineralization and vadose zone salinity,as well as the corresponding field work methods.[Result] The result showed that the nine primary vegetation populations were distributed in the study area,and Artemisia,Salix and Cares were the dominant vegetation species.The groundwater mineralization in the sand dunes was 100-300mg/L,and 800mg/L in the beach,vadose zone moisture content remained at 8%-16%.The dunes salinity was less than 0.2%,and beaches were higher than 0.3%.[Conclusion] These results provided a basis for study on the relationship between vegetation and groundwater in Mu Us Desert.
基金Supported by The Inner Mongolia Natural Science Foundation (2009ms0603)Inner Mongolia Scientific Innovation Program (nmqxkjcx200706)Special Fund for Scientific Research in Central Public Welfare Institution Fundamental(Grassland Research Institute of Chinese Academy of Agricultural Science)
文摘Thornthwaite Memorial model and other statistic methods were used to calculate the climate-productivity of plants with the meteorological data from 1961 to 2007 at 9 stations distributed on Inner Mongolia desert steppe.The spatial and temporal variation characteristics of climate-productivity were analyzed by using the methods of the tendency rate of the climate trend,accumulative anomaly,and spatial difference and so on.The results showed that the climate-productivity kept linear increased trend over Inner Mongolia desert steppe in recent 47 years,but not significant.In spatial distribution,the climate-productivity reduced with the increased latitude.The climate-productivity in southwest part of Inner Mongolia desert steppe was growing while that in the southeast was reducing.The variation rate of the climate-productivity increased from the northwest part to the southeast part of Inner Mongolia desert steppe.In recent 47 years,the climate-productivity in southeast Jurh underwent the greatest decreasing extent,and the region was the sensitive area of the climate-productivity variation.
文摘Net photosynthesis ( P n ), transpiration ( E ), stomatal conductance ( g s) and water use efficiency (WUE) of more than 218 species belonging to two different reproductive functional types, i.e. clonal (115 species) and non_clonal species (103 species), along the 1 670 km Northeast China Transect (NECT) were analyzed. The results showed that P n and WUE appeared to be lower in the east and west ends of NECT, with peaks in the middle. Transpiration was found to be higher in the west end, where most temperate desert species were distributed. On the same site, most clonal species showed higher P n and related physiological variables than non_clonal species. For different growth forms over NECT, e.g. forest trees, shrubs and grasses, meadow steppe shrubs and grasses, typical steppe shrubs and grasses, the meadow steppe and typical steppe grasses, showed higher values of physiological variables than the forest or the desert species. But for the two reproductive plant functional types (PFTs), clonal species had higher physiological variables, with averages of 22%, 15%, 23% and 14% higher than the non_clonal ones for P n , E, g s, and WUE, respectively. Such differences indicated that clonal species might have advantages over non_clonal species in utilizing environmental resources such as light, CO 2, and especially water.
基金supported by grants from the National Key Project of Basic Research (2006CB403702 and 2006CB403701)the CAMS Basis Research Project and National Natural Science Foundation of China under Grant No. 40405001
文摘The aerosol optical properties and direct radiative forcing over the Mu Us desert of northern China, acquired through a CE318 sunphotometer of the ground-based Aerosol Robotic Network (AERONET), are analyzed. The seasonal variations in the aerosol optical properties are examined. The effect of meteorological elements (pressure, temperature, water vapor pressure, relative humidity and wind speed) on the aerosol optical properties is also studied. Then, the sources and optical properties under two different cases, a dust event and a pollution event, are compared. The results show that the high aerosol optical depth (AOD) found in Yulin was mostly attributed to the occurrence of dust events in spring from the Mu Us desert and deserts of West China and Mongolia, as well as the impacts of anthropogenic pollutant particles from the middle part of China in the other seasons. The seasonal variation and the probability distribution of the radiative forcing and the radiative forcing efficiency at the surface and the top of the atmosphere are analyzed and regressed using the linear and Gaussian regression methods.
基金funded by the National Natural Science Foundation of China (Grant Nos. 41530750, 41501108 and 41371101)
文摘Distribution of rainfall event sizes and interval lengths between events are important characteristics of arid and semi-arid climates. Understanding their importance will contribute to our ability to understand ecosystem dynamics in these regions. Rainfall event timing and magnitude are important drivers of ecosystem processes and are instrumental in creating land-scape heterogeneity in arid and semi-arid regions. Rainfall event characteristics were analyzed using an automatic tip-ping-bucket rain-gauge record across the entire summer monsoon season from 2008 to 2015 at the arid desert area of Shapotou in the Tengger Desert, China. Changing the minimum inter-event time (MIT) from 30 min to 24 h alters the number of rainfall events from 64 to 25 for the event depth larger than 0.1 mm. The mean rainfall intensity declined from 0.95 mm/h to 0.53 mm/h, and the geometric mean event duration rose from 0.55 h to 4.4 h. The number of rainfall events, mean rainfall intensity, and geometric mean event duration differed under different criteria of individual rainfall depths, except that for an individual rainfall depth of 0.5, 1.0, and 5.0 mm. The aforementioned features differed only at the lowest range of the mean rainfall intensity and depth for MIT=3 and 6 h. These findings suggest that identification of event-based rainfall in this specific arid region can be better achieved by setting the MIT at six hours. The wide variation in rainfall event properties indicate the need for paying more attention to the proper selection and reporting of event criteria in studies that adopt event-based data analysis. This is especially true in quantifying effective rainfall for soil water replenishment in terms of rainfall depth and intensity with infrequent rainfall events.
基金This research was funded by projects of the National Natural Science Foundation of China(41702285)the National Geological Survey Project(121201106000150093)+1 种基金the National Natural Science Foundation of China(41807214)the Fundamental Scientific Research Funds from the Chinese Academy of Geological Sciences(No.SK202011).
文摘The Badain Jaran Desert is the third largest desert in China,covering an area of 50000 km2.It lies in Northwest China,where the arid and rainless natural environment has a great impact on the climate,environment,and human living conditions.Based on the results of 1∶250000 regional hydrogeological surveys and previous researches,this study systematically investigates the circulation characteristics and resource properties of the groundwater as well as the evolution of the climate and ecological environment since the Quaternary in the Badain Jaran Desert by means of geophysical exploration,hydrogeological drilling,hydrogeochemistry,and isotopic tracing.The results are as follows.(1)The groundwater in the Badain Jaran Desert is mainly recharged through the infiltration of local precipitation and has poor renewability.The groundwater recharge in the desert was calculated to be 1.8684×10^(8)m^(3)/a using the water balance method.(2)The Badain Jaran Desert has experienced four humid stages since the Quaternary,namely MIS 13-15,MIS 5,MIS 3,and the Early‒Middle Holocene,but the climate in the desert has shown a trend towards aridity overall.The average annual temperature in the Badain Jaran Desert has significantly increased in the past 50 years.In detail,it has increased by about 2.5℃,with a higher rate in the south than in the north.Meanwhile,the precipitation amount has shown high spatial variability and the climate has shown a warming-drying trend in the past 50 years.(3)The lakes in the hinterland of the Badain Jaran Desert continuously shrank during 1973‒2015.However,the vegetation communities maintained a highly natural distribution during 2000‒2016,with the vegetation cover has increased overall.Accordingly,the Badain Jaran Desert did not show any notable expansion in that period.This study deepens the understanding of groundwater circulation and the climate and ecological evolution in the Badain Jaran Desert.It will provide a scientific basis for the rational exploitation of the groundwater resources and the ecological protection and restoration in the Badain Jaran Desert.
基金Supported by Young Scientific Research Fund Item of Qinghai University (2009-QN-16)"Monitoring and Breeding Key Technology of Important Biological Species Resource in China and Its Application Demonstration " of National Science and Technology Support Item (2008BAC39B04)
文摘[Objective] The research aimed to study the resistance of four kinds of desert plants in Qinhai Lake area.[Method] By contrasting the resistance indexes of four kinds of plants which included Ephedra intermedia,Stellera chamaejasme,Achnatherum splendens and Xanthopappus subacaulis,the resistance of four kinds of plants in Qinghai Lake area was analyzed.The resistance indexes included the soluble protein,MDA,free Pro content and the activities of SOD,POD,CAT.Moreover,the resistance of four kinds of plants was evaluated comprehensively by using Fuzzy membership function method.[Result] Under the low-temperature and arid adversity in Qinghai Lake area,SOD activity presented as Stellera chamaejasme>Xanthopappus subacaulis>Ephedra intermedia>Achnatherum splendens,and CAT activity presented as Stellera chamaejasme>Xanthopappus subacaulis>Achnatherum splendens>Ephedra intermedia.Under the same high-salt environment,CAT activity of Stellera chamaejasme was eight times higher than that of Ephedra intermedia.It illustrated that the salt resistance of Stellera chamaejasme was stronger than that of Ephedra intermedia.The free Pro content showed as Xanthopappus subacaulis>Ephedra intermedia>Stellera chamaejasme>Achnatherum splendens.Under the same adversity,Pro content of Ephedra intermedia was 2.83 times of Stellera chamaejasme.It was because that MDA content in Stellera chamaejasme was the lowest,and the membranous peroxide harm was the smallest.It caused that Pro content (stress penetration material) was low.It also illustrated that the resistance of Stellera chamaejasme was stronger than that of Ephedra intermedia.The comprehensive evaluation of Fuzzy membership function showed that the resistance presented as Xanthopappus subacaulis>Stellera chamaejasme>Ephedra intermedia>Achnatherum splendens.[Conclusion] The research provided the theory basis for the breeding of drought-resistance new variety and the development of good germ plasm resource in Qinghai Lake area.
基金supported by the National Key Research and Development Program(2019YFA0606902)the National Natural Science Foundation of China(U1903208)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(2019431).
文摘In the arid region of northwestern China(ARNC),water resources are the most critical factor restricting socioeconomic development and influencing the stability of the area’s ecological systems.The region’s complex water system and unique hydrological cycle show distinctive characteristics.Moreover,the intensified hydrological cycle and extreme climatic and hydrological events resulting from global warming have led to increased uncertainty around water resources as well as heightened conflict between water supply and water demand.All of these factors are exerting growing pressures on the socioeconomic development and vulnerable ecological environment in the region.This research evaluates the impacts of climate change on water resources,hydrological processes,agricultural system,and desert ecosystems in the ARNC,and addresses some associated risks and challenges specific to this area.The temperature is rising at a rate of 0.31C per decade during 1961–2017 and hydrological processes are being significantly influenced by changes in glaciers,snow cover,and precipitation form,especially in the rivers recharged primarily by melt water.Ecosystems are also largely influenced by climate change,with the Normalized Difference Vegetation Index(NDVI)of natural vegetation exhibited an increasing trend prior to 1998,and then reversed in Xinjiang while the Hexi Corridor of Gansu showed the opposite trends.Furthermore,the desert-oasis transition zone showed a reduction in area due to the warming trend and the recent rapid expansion of irrigated area.Both the warming and intensified drought are threatening agriculture security.The present study could shed light on sustainable development in this region under climate change and provides scientific basis to the construction of the“Silk Road Economic Belt”.
基金Supported by National Natural Science Foundation of China(41261102,41661064)
文摘The instability of climate in Minqin desert area during the process of global warming was analyzed based on meteorological data during 1961-2013. The results show that the instability of monthly average temperature in January and April increased. Isothermal date in February was 10.36 d earlier from 1961 to 2013. The instability of extreme maximum temperature in December and January enhanced. The instability of extreme minimum temperature in July increased. The coefficient of variation of extreme minimum temperature in May was up to 287.3%. The instability of average precipitation in January enhanced. At the same time,the stability of annual average precipitation increased. The stability of climate is more worthy of attention.
基金funded by the Open Project of Key Laboratory of Xinjiang Uygur Autonomous Region(No.2022D04003)the National Basic resource survey of China(No.2017FY100200)+1 种基金the National Natural Science Foundation of China(Grant No.32060408)the graduate scientific research and innovation project of Xinjiang Agricultural University(No.XJAUGRI2021003).
文摘Soil organic carbon(SOC)is a critical variable used to determine the carbon balance.However,large uncertainties arise when predicting the SOC stock in soil profiles in Chinese grasslands,especially on desert rangelands.Recent studies have shown that desert ecosystems may be potential carbon sinks under global climate change.Because of the high spatial heterogeneity,time-consuming sampling methods,and difficult acquisition process,the relationships the SOC storage and distribution have with driving factors in desert rangelands remain poorly understood.Here,we investigated and developed an SOC database from 3162 soil samples(collected at depths of 0−10 cm and 10−20 cm)across 527 sites,as well as the climate conditions,vegetation types,and edaphic factors associated with the sampling sites in the desert rangelands of northern Xinjiang,north-west China.This study aims to determine the SOC magnitude and drivers in desert rangelands.Our findings demonstrate that the SOC and SOC density(SOCD)were 0.05−37.13 g·kg^(-1)and 19.23−9740.62 g·m^(-2),respectively,with average values of 6.81±5.31 g·kg^(-1)and 1670.38±1202.52 g·m^(-2),respectively.The spatial distributions of SOC and SOCD all showed gradually decreasing trends from south-west to north-east.High-SOC areas were mainly distributed in the piedmont lowlands of the Ili valley,while low-SOC regions were mainly concentrated in the north-west area of Altay.The redundancy analysis results revealed that all environmental factors accounted for approximately 37.6%of the spatial variability in SOC;climate factors,vegetation factors,and soil properties explained 15.0%,1.7%,and 12.3%,respectively.The structural equation model(SEM)further indicated that evapotranspiration,average annual precipitation,and the SWC were the dominant factors affecting SOC accumulation,mainly through direct effects,although indirect effects were also delivered by the vegetation factors.Taken together,the results obtained herein updated the SOC data pool available for desert rangelands and clarified the main driving factors of SOC variations.This study provided supporting data for the sustainable use and management of desert rangelands and the global ecosystem carbon budget.