This paper presents a review on the impact of El Nio on the interannual variability of atmospheric circulations over East Asia and rainfall in China through the anomalous anticyclone over western North Pacific(WNPAC)....This paper presents a review on the impact of El Nio on the interannual variability of atmospheric circulations over East Asia and rainfall in China through the anomalous anticyclone over western North Pacific(WNPAC). It explains the formation mechanisms of the WNPAC and physical processes by which the WNPAC affects the rainfall in China. During the mature phase of El Nio, the convective cooling anomalies over western tropical Pacific caused by the weakened convections trigger up an atmospheric Rossby wave response, resulting in the generation of the WNPAC. The WNPAC can persist from the winter when the El Nio is in its peak to subsequent summer, which is maintained by multiple factors including the sustained presence of convective cooling anomalies and the local air-sea interaction over western tropical Pacific, and the persistence of sea surface temperature anomalies(SSTA) in tropical Indian and tropical North Atlantic. The WNPAC can influence the atmospheric circulations over East Asia and rainfall in China not only simultaneously, but also in the subsequent summer after an El Nio year, leading to more rainfall over southern China. The current paper also points out that significant anomalies of atmospheric circulations over East Asia and rainfall over southern China occur in El Nio winter but not in La Nio winter, suggesting that El Nio and La Nio have an asymmetric effect. Other issues, including the impact of El Nio diversity and its impact as well as the relations of the factors affecting the persistence of the WNPAC with summer rainfall anomalies in China, are also discussed. At the end of this paper some issues calling for further investigation are discussed.展开更多
Record-breaking heavy and persistent precipitation occurred over the Yangtze River Valley(YRV)in June-July(JJ)2020.An observational data analysis has indicated that the strong and persistent rainfall arose from the co...Record-breaking heavy and persistent precipitation occurred over the Yangtze River Valley(YRV)in June-July(JJ)2020.An observational data analysis has indicated that the strong and persistent rainfall arose from the confluence of southerly wind anomalies to the south associated with an extremely strong anomalous anticyclone over the western North Pacific(WNPAC)and northeasterly anomalies to the north associated with a high-pressure anomaly over Northeast Asia.A further observational and modeling study has shown that the extremely strong WNPAC was caused by both La Niña-like SST anomaly(SSTA)forcing in the equatorial Pacific and warm SSTA forcing in the tropical Indian Ocean(IO).Different from conventional central Pacific(CP)El Niños that decay slowly,a CP El Niño in early 2020 decayed quickly and became a La Niña by early summer.This quick transition had a critical impact on the WNPAC.Meanwhile,an unusually large area of SST warming occurred in the tropical IO because a moderate interannual SSTA over the IO associated with the CP El Niño was superposed by an interdecadal/long-term trend component.Numerical sensitivity experiments have demonstrated that both the heating anomaly in the IO and the heating anomaly in the tropical Pacific contributed to the formation and maintenance of the WNPAC.The persistent high-pressure anomaly in Northeast Asia was part of a stationary Rossby wave train in the midlatitudes,driven by combined heating anomalies over India,the tropical eastern Pacific,and the tropical Atlantic.展开更多
基金supported by the National Key Project for Basic Science Development (Grant No. 2015CB453203)the National Key Research and Development Program (Grant No. 2016YFA0600602)the National Natural Science Foundation of China (Grant No. 41661144017)
文摘This paper presents a review on the impact of El Nio on the interannual variability of atmospheric circulations over East Asia and rainfall in China through the anomalous anticyclone over western North Pacific(WNPAC). It explains the formation mechanisms of the WNPAC and physical processes by which the WNPAC affects the rainfall in China. During the mature phase of El Nio, the convective cooling anomalies over western tropical Pacific caused by the weakened convections trigger up an atmospheric Rossby wave response, resulting in the generation of the WNPAC. The WNPAC can persist from the winter when the El Nio is in its peak to subsequent summer, which is maintained by multiple factors including the sustained presence of convective cooling anomalies and the local air-sea interaction over western tropical Pacific, and the persistence of sea surface temperature anomalies(SSTA) in tropical Indian and tropical North Atlantic. The WNPAC can influence the atmospheric circulations over East Asia and rainfall in China not only simultaneously, but also in the subsequent summer after an El Nio year, leading to more rainfall over southern China. The current paper also points out that significant anomalies of atmospheric circulations over East Asia and rainfall over southern China occur in El Nio winter but not in La Nio winter, suggesting that El Nio and La Nio have an asymmetric effect. Other issues, including the impact of El Nio diversity and its impact as well as the relations of the factors affecting the persistence of the WNPAC with summer rainfall anomalies in China, are also discussed. At the end of this paper some issues calling for further investigation are discussed.
基金This work was jointly supported by China National Key R&D Program 2018YFA0605604,NSFC Grant No.42088101,NOAA NA18OAR4310298,and NSF AGS-2006553This is SOEST contribution number 11354,IPRC contribution number 1524,and ESMC number 350.
文摘Record-breaking heavy and persistent precipitation occurred over the Yangtze River Valley(YRV)in June-July(JJ)2020.An observational data analysis has indicated that the strong and persistent rainfall arose from the confluence of southerly wind anomalies to the south associated with an extremely strong anomalous anticyclone over the western North Pacific(WNPAC)and northeasterly anomalies to the north associated with a high-pressure anomaly over Northeast Asia.A further observational and modeling study has shown that the extremely strong WNPAC was caused by both La Niña-like SST anomaly(SSTA)forcing in the equatorial Pacific and warm SSTA forcing in the tropical Indian Ocean(IO).Different from conventional central Pacific(CP)El Niños that decay slowly,a CP El Niño in early 2020 decayed quickly and became a La Niña by early summer.This quick transition had a critical impact on the WNPAC.Meanwhile,an unusually large area of SST warming occurred in the tropical IO because a moderate interannual SSTA over the IO associated with the CP El Niño was superposed by an interdecadal/long-term trend component.Numerical sensitivity experiments have demonstrated that both the heating anomaly in the IO and the heating anomaly in the tropical Pacific contributed to the formation and maintenance of the WNPAC.The persistent high-pressure anomaly in Northeast Asia was part of a stationary Rossby wave train in the midlatitudes,driven by combined heating anomalies over India,the tropical eastern Pacific,and the tropical Atlantic.