A singular value decomposition (SVD) analysis is carried out to reveal the relationship between the interannual variation of track and intensity of the western North Pacific tropical cyclones (WNPTCs) in the tropi...A singular value decomposition (SVD) analysis is carried out to reveal the relationship between the interannual variation of track and intensity of the western North Pacific tropical cyclones (WNPTCs) in the tropical cyclone (TC) active season (July–November) and the global net air-sea heat flux (Q net ) in the preceding season (April–June). For this purpose, a tropical cyclone track and intensity function (TIF) is defined by a combination of accumulated cyclone energy (ACE) index and a cyclone track density function. The SVD analysis reveals that the first mode is responsible for the positive correlation between the upward heat flux in the tropical central Pacific and the increased activity of western North Pacific (WNP) TIF, the second mode for the positive correlation between the upward heat flux in the North Indian Ocean and the northeastward track shift of WNPTCs and the third mode for the negative correlation between the upward heat flux in mid-latitude central Pacific and the northwest displacement of the WNP TC-active center. This suggests that Q net anomalies in some key regions have a substantial remote impact on the WNP TC activity.展开更多
Interannual variations of the air-sea CO2 exchange from 1965 to 2000 in the Pacific Ocean are studied with a Pacific Ocean model. Two numerical experiments are performed, including the control run that is forced by cl...Interannual variations of the air-sea CO2 exchange from 1965 to 2000 in the Pacific Ocean are studied with a Pacific Ocean model. Two numerical experiments are performed, including the control run that is forced by climatological monthly mean physical data and the climate-change run that is forced by interannually varying monthly mean physical data. Climatological monthly winds are used in both runs to calculate the coefficient of air-sea CO2 exchange. The analysis through the differences between the two runs shows that in the tropical Pacific the variation of export production induced by interannual variations of the physical fields is negatively correlated with that of the air-sea CO2 flux, while there is no correlation or a weak positive correlation in the subtropical North and South Pacific. It indicates that the variation of the physical fields can modulate the variation of the air-sea CO2 flux in converse ways in the tropical Pacific by changing the direct transport and biochemical process. Under the interannually varying monthly mean forcing, the simulated EOF 1 of the air-sea CO2 flux is basically consistent with that of sea surface temperature (SST) in the tropical Pacific, but contrary in the two subtropical Pacific Ocean. The correlation coefficient between the regionally integrated air-sea CO2 flux and area-mean SST shows that when the air-sea CO2 flux lags SST by about 5 months, the positive coefficient in the three regions is largest, indicating that in the tropical Pacific or on the longer time scale in the three regions, physical processes control the fiux-SST relationship.展开更多
A new regional coupled ocean–atmosphere model,WRF4-LICOM,was used to investigate the impacts of regional air–sea coupling on the simulation of the western North Pacific summer monsoon(WNPSM),with a focus on the norm...A new regional coupled ocean–atmosphere model,WRF4-LICOM,was used to investigate the impacts of regional air–sea coupling on the simulation of the western North Pacific summer monsoon(WNPSM),with a focus on the normal WNPSM year 2005.Compared to WRF4,WRF4-LICOM improved the simulation of the summer mean monsoon rainfall,circulations,sea surface net heat fluxes,and propagations of the daily rainband over the WNP.The major differences between the models were found over the northern South China Sea and east of the Philippines.The warmer SST reduced the gross moist stability of the atmosphere and increased the upward latent heat flux,and then drove local ascending anomalies,which led to the increase of rainfall in WRF4-LICOM.The resultant enhanced atmospheric heating drove a low-level anomalous cyclone to its northwest,which reduced the simulated circulation biases in the stand-alone WRF4 model.The local observed daily SST over the WNP was a response to the overlying summer monsoon.In the WRF4 model,the modeled atmosphere exhibited passive response to the underlying daily SST anomalies.With the inclusion of regional air–sea coupling,the simulated daily SST–rainfall relationship was significantly improved.WRF4-LICOM is recommended for future dynamical downscaling of simulations and projections over this region.展开更多
The impact of surface sensible heating over the Tibetan Plateau (SHTP) on the western Pacific subtropical high (WPSH) with and without air-sea interaction was investigated in this study. Data analysis indicated th...The impact of surface sensible heating over the Tibetan Plateau (SHTP) on the western Pacific subtropical high (WPSH) with and without air-sea interaction was investigated in this study. Data analysis indicated that SHTP acts as a relatively independent factor in modulating the WPSH anomaly compared with ENSO events. Stronger spring SHTP is usually fol- lowed by an enhanced and westward extension of the WPSH in summer, and vice versa. Numerical experiments using both an AGCM and a CGCM confirmed that SHTP influences the large-scale circulation anomaly over the Pacific, which features a barotropic anticyclonic response over the northwestern Pacific and a cyclonic response to the south. Owing to different background circulation in spring and summer, such a response facilitates a subdued WPSH in spring but an en- hanced WPSH in summer. Moreover, the CGCM results showed that the equatorial low-level westerly at the south edge of the cyclonic anomaly brings about a warm SST anomaly (SSTA) in the equatorial central Pacific via surface warm advection. Subsequently, an atmospheric Rossby wave is stimulated to the northwest of the warm SSTA, which in turn enhances the at- mospheric dipole anomalies over the western Pacific. Therefore, the air-sea feedbacks involved tend to reinforce the effect of SHTP on the WPSH anomaly, and the role of SHTP on general circulation needs to be considered in a land-air-sea interaction framework.展开更多
On the basis of Argo profile data of the temperature and salinity from January 2001 to July 2014, the spatial distributions of an upper ocean heat content(OHC) and ocean salt content(OSC) of the western Pacific warm p...On the basis of Argo profile data of the temperature and salinity from January 2001 to July 2014, the spatial distributions of an upper ocean heat content(OHC) and ocean salt content(OSC) of the western Pacific warm pool(WPWP) region and their seasonal and interannual variations are studied by a cyclostationary empirical orthogonal function(CSEOF) decomposition, a maximum entropy spectral analysis, and a correlation analysis.Probable reasons for variations are discussed. The results show the following.(1) The OHC variations in the subsurface layer of the WPWP are much greater than those in the surface layer. On the contrary, the OSC variations are mainly in the surface layer, while the subsurface layer varies little.(2) Compared with the OSC, the OHC of the WPWP region is more affected by El Ni?o-Southern Oscillation(ENSO) events. The CSEOF analysis shows that the OHC pattern in mode 1 has strong interannual oscillation, with eastern and western parts opposite in phase. The distribution of the OSC has a positive-negative-positive tripole pattern. Time series analysis shows that the OHC has three phase adjustments with the occurrence of ENSO events after 2007, while the OSC only had one such adjustment during the same period. Further analysis indicates that the OHC variations are mainly caused by ENSO events, local winds, and zonal currents, whereas the OSC variations are caused by much more complex reasons. Two of these, the zonal current and a freshwater flux, have a positive feedback on the OSC change in the WPWP region.展开更多
A weakly coupled assimilation system, in which SST observations are assimilated into a coupled climate model (CAS- ESM-C) through an ensemble optimal interpolation scheme, was established. This system is a useful to...A weakly coupled assimilation system, in which SST observations are assimilated into a coupled climate model (CAS- ESM-C) through an ensemble optimal interpolation scheme, was established. This system is a useful tool for historical climate simulation, showing substantial advantages, including maintaining the atmospheric feedback, and keeping the oceanic tields from drifting far away from the observation, among others. During the coupled model integration, the bias of both surface and subsurface oceanic fields in the analysis can be reduced compared to unassimilated fields. Based on 30 model years of ot.tput fiom the system, the climatology and imerannual variability of the climate system were evaluated. The results showed that the system can reasonably reproduce the climatological global precipitation and SLP, bul it still sutters from the double ITCZ problem. Besides, the ENSO footprint, which is revealed by ENSO-related surface air temperature, geopotential height and precipitation during El Nifio evolution, is basically reproduced by the system. The system can also simulate the observed SST-rainfall relationships well on both interannual and intraseasonal timescales in the western North Pacific region, in which atmospheric feedback is crucial for climate simulation.展开更多
基金The National Key Basic Research Program of China under Grant No.2009CB421404the National Natural Science Foundation of China-Regional Cooperation Project under Grant No.40921160379+1 种基金the National Natural Science foundation of China under Grant No.40730951the Fundamental Research Funds for the Central Universities under Grant No.11lgjc10
文摘A singular value decomposition (SVD) analysis is carried out to reveal the relationship between the interannual variation of track and intensity of the western North Pacific tropical cyclones (WNPTCs) in the tropical cyclone (TC) active season (July–November) and the global net air-sea heat flux (Q net ) in the preceding season (April–June). For this purpose, a tropical cyclone track and intensity function (TIF) is defined by a combination of accumulated cyclone energy (ACE) index and a cyclone track density function. The SVD analysis reveals that the first mode is responsible for the positive correlation between the upward heat flux in the tropical central Pacific and the increased activity of western North Pacific (WNP) TIF, the second mode for the positive correlation between the upward heat flux in the North Indian Ocean and the northeastward track shift of WNPTCs and the third mode for the negative correlation between the upward heat flux in mid-latitude central Pacific and the northwest displacement of the WNP TC-active center. This suggests that Q net anomalies in some key regions have a substantial remote impact on the WNP TC activity.
基金The Research and Development Special Fund for Public Welfare Industry (meteorology) of the China Meteorological Adminstration under contract No.2008416022the Ocean Public Welfare Scientific Research Project of State Oceanic Administration of China under contract No.200905012-4+1 种基金the National Natural Science Foundation of China under contract Nos 40730106,41075091 and 41105087the National Basic Research Program (973 Program) of China under contract No. 2010CB951802
文摘Interannual variations of the air-sea CO2 exchange from 1965 to 2000 in the Pacific Ocean are studied with a Pacific Ocean model. Two numerical experiments are performed, including the control run that is forced by climatological monthly mean physical data and the climate-change run that is forced by interannually varying monthly mean physical data. Climatological monthly winds are used in both runs to calculate the coefficient of air-sea CO2 exchange. The analysis through the differences between the two runs shows that in the tropical Pacific the variation of export production induced by interannual variations of the physical fields is negatively correlated with that of the air-sea CO2 flux, while there is no correlation or a weak positive correlation in the subtropical North and South Pacific. It indicates that the variation of the physical fields can modulate the variation of the air-sea CO2 flux in converse ways in the tropical Pacific by changing the direct transport and biochemical process. Under the interannually varying monthly mean forcing, the simulated EOF 1 of the air-sea CO2 flux is basically consistent with that of sea surface temperature (SST) in the tropical Pacific, but contrary in the two subtropical Pacific Ocean. The correlation coefficient between the regionally integrated air-sea CO2 flux and area-mean SST shows that when the air-sea CO2 flux lags SST by about 5 months, the positive coefficient in the three regions is largest, indicating that in the tropical Pacific or on the longer time scale in the three regions, physical processes control the fiux-SST relationship.
基金jointly supported by the National Natural Science Foundation of China grant number 41875132The National Key Research and Development Program of China grant number 2018YFA0606003。
文摘A new regional coupled ocean–atmosphere model,WRF4-LICOM,was used to investigate the impacts of regional air–sea coupling on the simulation of the western North Pacific summer monsoon(WNPSM),with a focus on the normal WNPSM year 2005.Compared to WRF4,WRF4-LICOM improved the simulation of the summer mean monsoon rainfall,circulations,sea surface net heat fluxes,and propagations of the daily rainband over the WNP.The major differences between the models were found over the northern South China Sea and east of the Philippines.The warmer SST reduced the gross moist stability of the atmosphere and increased the upward latent heat flux,and then drove local ascending anomalies,which led to the increase of rainfall in WRF4-LICOM.The resultant enhanced atmospheric heating drove a low-level anomalous cyclone to its northwest,which reduced the simulated circulation biases in the stand-alone WRF4 model.The local observed daily SST over the WNP was a response to the overlying summer monsoon.In the WRF4 model,the modeled atmosphere exhibited passive response to the underlying daily SST anomalies.With the inclusion of regional air–sea coupling,the simulated daily SST–rainfall relationship was significantly improved.WRF4-LICOM is recommended for future dynamical downscaling of simulations and projections over this region.
基金supported jointly by the National Natural Science Foundation of China(Grant No.91337216)the Special Fund for Public Welfare Industry(Meteorology),administered by the Chinese Ministry of Finance and the Ministry of Science and Technology(Grant No.GYHY201406001)the CAS XDA(Grant No.11010402)
文摘The impact of surface sensible heating over the Tibetan Plateau (SHTP) on the western Pacific subtropical high (WPSH) with and without air-sea interaction was investigated in this study. Data analysis indicated that SHTP acts as a relatively independent factor in modulating the WPSH anomaly compared with ENSO events. Stronger spring SHTP is usually fol- lowed by an enhanced and westward extension of the WPSH in summer, and vice versa. Numerical experiments using both an AGCM and a CGCM confirmed that SHTP influences the large-scale circulation anomaly over the Pacific, which features a barotropic anticyclonic response over the northwestern Pacific and a cyclonic response to the south. Owing to different background circulation in spring and summer, such a response facilitates a subdued WPSH in spring but an en- hanced WPSH in summer. Moreover, the CGCM results showed that the equatorial low-level westerly at the south edge of the cyclonic anomaly brings about a warm SST anomaly (SSTA) in the equatorial central Pacific via surface warm advection. Subsequently, an atmospheric Rossby wave is stimulated to the northwest of the warm SSTA, which in turn enhances the at- mospheric dipole anomalies over the western Pacific. Therefore, the air-sea feedbacks involved tend to reinforce the effect of SHTP on the WPSH anomaly, and the role of SHTP on general circulation needs to be considered in a land-air-sea interaction framework.
基金The National Natural Science Foundation of China under contract Nos 41406022 and 41606003the Scientific Research Fund of the Second Institute of Oceanography,State Oceanic Administration of China under contract Nos JG1812 and JG1709the Special Program for the National Basic Research of China under contract No.2012FY112300
文摘On the basis of Argo profile data of the temperature and salinity from January 2001 to July 2014, the spatial distributions of an upper ocean heat content(OHC) and ocean salt content(OSC) of the western Pacific warm pool(WPWP) region and their seasonal and interannual variations are studied by a cyclostationary empirical orthogonal function(CSEOF) decomposition, a maximum entropy spectral analysis, and a correlation analysis.Probable reasons for variations are discussed. The results show the following.(1) The OHC variations in the subsurface layer of the WPWP are much greater than those in the surface layer. On the contrary, the OSC variations are mainly in the surface layer, while the subsurface layer varies little.(2) Compared with the OSC, the OHC of the WPWP region is more affected by El Ni?o-Southern Oscillation(ENSO) events. The CSEOF analysis shows that the OHC pattern in mode 1 has strong interannual oscillation, with eastern and western parts opposite in phase. The distribution of the OSC has a positive-negative-positive tripole pattern. Time series analysis shows that the OHC has three phase adjustments with the occurrence of ENSO events after 2007, while the OSC only had one such adjustment during the same period. Further analysis indicates that the OHC variations are mainly caused by ENSO events, local winds, and zonal currents, whereas the OSC variations are caused by much more complex reasons. Two of these, the zonal current and a freshwater flux, have a positive feedback on the OSC change in the WPWP region.
基金supported by the China Postdoctoral Science Foundation(Grant No.2015M571095)the Chinese Academy of Sciences Project“Western Pacific Ocean System:Structure,Dynamics and Consequences”(Grant No.XDA10010405)
文摘A weakly coupled assimilation system, in which SST observations are assimilated into a coupled climate model (CAS- ESM-C) through an ensemble optimal interpolation scheme, was established. This system is a useful tool for historical climate simulation, showing substantial advantages, including maintaining the atmospheric feedback, and keeping the oceanic tields from drifting far away from the observation, among others. During the coupled model integration, the bias of both surface and subsurface oceanic fields in the analysis can be reduced compared to unassimilated fields. Based on 30 model years of ot.tput fiom the system, the climatology and imerannual variability of the climate system were evaluated. The results showed that the system can reasonably reproduce the climatological global precipitation and SLP, bul it still sutters from the double ITCZ problem. Besides, the ENSO footprint, which is revealed by ENSO-related surface air temperature, geopotential height and precipitation during El Nifio evolution, is basically reproduced by the system. The system can also simulate the observed SST-rainfall relationships well on both interannual and intraseasonal timescales in the western North Pacific region, in which atmospheric feedback is crucial for climate simulation.