The impact of surface sensible heating over the Tibetan Plateau (SHTP) on the western Pacific subtropical high (WPSH) with and without air-sea interaction was investigated in this study. Data analysis indicated th...The impact of surface sensible heating over the Tibetan Plateau (SHTP) on the western Pacific subtropical high (WPSH) with and without air-sea interaction was investigated in this study. Data analysis indicated that SHTP acts as a relatively independent factor in modulating the WPSH anomaly compared with ENSO events. Stronger spring SHTP is usually fol- lowed by an enhanced and westward extension of the WPSH in summer, and vice versa. Numerical experiments using both an AGCM and a CGCM confirmed that SHTP influences the large-scale circulation anomaly over the Pacific, which features a barotropic anticyclonic response over the northwestern Pacific and a cyclonic response to the south. Owing to different background circulation in spring and summer, such a response facilitates a subdued WPSH in spring but an en- hanced WPSH in summer. Moreover, the CGCM results showed that the equatorial low-level westerly at the south edge of the cyclonic anomaly brings about a warm SST anomaly (SSTA) in the equatorial central Pacific via surface warm advection. Subsequently, an atmospheric Rossby wave is stimulated to the northwest of the warm SSTA, which in turn enhances the at- mospheric dipole anomalies over the western Pacific. Therefore, the air-sea feedbacks involved tend to reinforce the effect of SHTP on the WPSH anomaly, and the role of SHTP on general circulation needs to be considered in a land-air-sea interaction framework.展开更多
Both 1981 and 2013 were weak La Nifia years with a similar sea surface temperature (SST) anomaly in the tropical Pacific, yet the westem Pacific subtropical high (WPSH) during August exhibited an opposite anomaly ...Both 1981 and 2013 were weak La Nifia years with a similar sea surface temperature (SST) anomaly in the tropical Pacific, yet the westem Pacific subtropical high (WPSH) during August exhibited an opposite anomaly in the two years. A comparison indicates that, in the absence of a strong SST anomaly in the tropics, the cold advection from Eurasian high latitudes and the convection of the western Pacific warm pool play important roles in influencing the strength and position of the WPSH in August. In August 1981, the spatial pattern of 500 hPa geopotential height was characterized by a meridional circulation with a strong ridge in the Ural Mountains and a deep trough in Siberia, which provided favorable conditions for cold air invading into the lower latitudes. Accordingly, the geopotential height to the north of the WPSH was reduced by the cold advection anomaly from high latitudes, resulting in an eastward retreat of the WPSH. Moreover, an anomalous cyclonic circulation in the subtropical western Pacific, excited by enhanced warm pool convection, also contributed to the eastward retreat of the WPSH. By contrast, the influence from high latitudes was relatively weak in August 2013 due to a zonal circulation pattern over Eurasia, and the anomalous anticyclonic circulation induced by suppressed warm pool convection also facilitated the westward extension of the WPSH. Therefore, the combined effects of the high latitude and tropical circulations may contribute a persistent anomaly of the WPSH in late summer, despite the tropical SST anomaly being weak.展开更多
The interdecadal variation of the summer western Pacific subtropical high(WPSH)during1948–2009 is investigated in this study.Compared with most previous works,which focused on the 500 h Pa geopotential height,the int...The interdecadal variation of the summer western Pacific subtropical high(WPSH)during1948–2009 is investigated in this study.Compared with most previous works,which focused on the 500 h Pa geopotential height,the interdecadal variation of the horizontal winds,relative vorticity,and eddy geopotential height over the western Pacific are all analyzed.The weakened anticyclone and decreased negative relative vorticity at middle-low levels over the western Pacific suggest that the WPSH weakened during 1979–2009 relative to1948–78.After subtracting the zonal belt mean height between 0°and 40°N,the 500 hP a eddy geopotential height with significant negative anomalies over the western Pacific can correctly depict this weakened interdecadal variation of the WPSH.The illusory westward extension signal reflected by the 500 h Pa geopotential height may derive from the significant increment of the geopotential height at middle and lower latitudes in the late 1970s under global warming.展开更多
Western North Pacific Subtropical High is a very important atmospheric circulation system influencing the summer climate over eastern China. Its interdecadal change is analyzed in this study. There is a significant de...Western North Pacific Subtropical High is a very important atmospheric circulation system influencing the summer climate over eastern China. Its interdecadal change is analyzed in this study. There is a significant decadal shift in about 1979/1980. Since 1980, the Western North Pacific Subtropical High has enlarged, intensified, and shifted southwestward. This change gives rise to an anti-cyclonic circulation anomaly over the region from the South China Sea to western Pacific and thus causes wet anomalies over the Yangtze River valley. During the summers of 1980-1999, the precipitation is 63.9 mm above normal, while during 1958-1979 it is 27.3 mm below normal. The difference is significant at the 99% confidence level as a t-test shown. The southwestward expanding of the Western North Pacific Subtropical High also leads to a significant warming in southern China, during 1980-1999 the summer mean temperature is 0.37篊 warmer than that of the period 1958-1979. The strong warming is primarily due to the clearer skies associated with the stronger downward air motion as the Western North Pacific Subtropical High expanding to the west and controlling southern China. It is also found that the relative percentage of tropical cyclones in the regions south of 20篘 is decreasing since the 1980s, but in the regions north of 20篘 that is increasing at the same time. The Western North Pacific Subtropical High responds significantly to sea surface temperature of the tropical eastern Pacific with a lag of one-two seasons and simultaneously to sea surface temperature of the tropical Indian Ocean. The changes in the sea surface temperatures are mainly responsible for the interdecadal variability of the Western North Pacific Subtropical High.展开更多
The anomalous behavior of the western Pacific subtropical high (WPSH) in E1 Nifio developing summer is studied based on the composite results of eight major E1 Nifio events during 1979-2013. It is shown that the WPS...The anomalous behavior of the western Pacific subtropical high (WPSH) in E1 Nifio developing summer is studied based on the composite results of eight major E1 Nifio events during 1979-2013. It is shown that the WPSH tends to retreat eastwards with weak intensity during the developing summer. The anomaly exhibits an intraseasonal variation with a weaker anomaly in June and July and a stronger anomaly in August, indicating that different underlying physical mechanisms may be responsible for the anomalous WPSH during early and late summer periods. In June and July, owing to the cold advection anomaly characterized as a weak northerly anomaly from high latitudes, geopotential height in East Asia is reduced and the WPSH tends to retreat eastwards slightly. By contrast, enhanced convection over the warm pool in August makes the atmosphere more sensitive to E1 Nifio forcing. Consequently, a cyclonic anomaly in the western Pacific is induced, which is consistent with the seasonal march of atmospheric circulation from July to August. Accordingly, geopotential height in the western Pacific is reduced significantly, and the WPSH tends to retreat eastwards remarkably in August. Different from the developing summer, geopotential height in the decaying summer over East Asia and the western Pacific tends to enhance and extend northwards from June to August consistently, reaching the maximum anomaly in August. Therefore, the seasonal march plays an important role in the WPSH anomaly for both the developing and decaying summer.展开更多
The paper investigates the vertical circulation structure of the western Pacific subtropical high (STH) and its interannual variation features in relation tO East Asian subtropical summer monsoon and external thermal ...The paper investigates the vertical circulation structure of the western Pacific subtropical high (STH) and its interannual variation features in relation tO East Asian subtropical summer monsoon and external thermal forcing by using the high-resolution and good-quality observations from the 1998 South China Sea Summer Monsoon Experiment (SCSMEX), the NCEP 40-year reanalysis data and relevant SST and the STH parameters. It is found that the vertical circulation structures differ greatly in features between quasi-Stationary and transient components of the western Pacific STH. When rainstorms happen in the rainband of East Asian subtropical monsoon on the STH north side, the downdrafts are distinct around the ridge at a related meridian. The sinking at high (low) levels comes from the north (south) side of the STH, thereby revealing that the high is a tie between tropical and extratropical systems. The analyses of this paper suggest that the latent heat release associated with subtropical monsoon precipitation, the offshore SST and East Asian land-sea thermal contrast have a significant effect on the STH interannual anomaly. Our numerical experiment shows that the offshore SSTA-caused sensible heating may excite an anomalous anticyclonic circulation on the west side, which affects the intensity (area) and meridional position of the western Pacific STH.展开更多
In this paper, a close relationship between the intraseasonal variation of subtropical high over East Asia and the convective activities around the South China Sea and the Philippines is analysed from OLR data.This re...In this paper, a close relationship between the intraseasonal variation of subtropical high over East Asia and the convective activities around the South China Sea and the Philippines is analysed from OLR data.This relationship is studied by using the theory of wave propagating in a slowly varying medium and by using a quasi-geoslrophic, linear, spherical model and the IAP-GCM, respectively. The results show that when the SST is warming around the western tropical Pacific or the Philippines, the convective activities are intensified around the Philippines. As a consequence, the subtropical high will be intensified over East Asia. The computed results also show that when the anomaly of convective activities are caused around the Philippines, a teleconnection pattern of circulation anomalies will be caused over South Asia, East Asia and North America.展开更多
By adopting characteristic index data for the Western Pacific Subtropical High(WPSH) from the National Climate Center of China, U.S. National Centers for Environmental Prediction-National Center for Atmospheric Resear...By adopting characteristic index data for the Western Pacific Subtropical High(WPSH) from the National Climate Center of China, U.S. National Centers for Environmental Prediction-National Center for Atmospheric Research(NCEP/NCAR) reanalysis data, and the National Oceanic and Atmospheric Administration(NOAA) sea surface temperature(SST) data, we studied the WPSH variability considering the background of climate warming by using a Gaussian filter, moving averages, correlation analysis, and synthetic analysis. Our results show that with climate warming over the past 60 years, significant changes in the WPSH include its enlarged area, strengthened intensity,westward extended ridge point and southward expanded southern boundary, as well as enhanced interannual fluctuations in all these indices. The western ridge point of the WPSH consistently varies with temperature changes in the Northern Hemisphere, but the location of the ridgeline varies independently. The intensity and area of the WPSH were both significantly increased in the late 1980 s. Specifically, the western ridge point started to significantly extend westward in the early 1990 s, and the associated interannual variability had a significant increase in the late 1990 s; in addition, the ridgeline was swaying along the north-south-north direction, and the corresponding variability was also greatly enhanced in the late 1990 s. With climate warming, the SST increase becomes more weakly correlated with the WPSH intensity enhancement but more strongly correlated with the westward extension of the ridge point in the equatorial central and eastern Pacific Ocean in winter, corresponding to an expanding WPSH in space. In the northern Pacific in winter, the SST decrease has a weaker correlation with the southerly location of the ridgeline but also a stronger correlation with the westward extension of the ridge point. In the tropical western Pacific in winter, the correlations of the SST decrease with the WPSH intensity enhancement, and the westward extension of the ridge point is strengthened. These observations can be explained by strengthened Hadley circulations, the dominant effects of the southward shift, and additional effects of the weakened ascending branch of the Walker circulation during warm climatological periods,which consequently lead to strengthened intensities, increased areas, and southward expansions of the WPSH in summer.展开更多
Based on the pentad mean ridgeline index of the western Pacific subtropical high (WPSH), the authors identified the two northward jumps of the WPSH from 1979 to 2008 and revealed their associations with the tropical S...Based on the pentad mean ridgeline index of the western Pacific subtropical high (WPSH), the authors identified the two northward jumps of the WPSH from 1979 to 2008 and revealed their associations with the tropical SST anomalies. The authors show that the northward jumps, especially the second jump, exhibited remarkable interannual variability. In addition, the authors find that the two northward jumps were mutually independent and were influenced by the SST anomalies in the different regions of the tropical Pacific. The first jump was positively correlated with the SST anomalies in the tropical central Pacific from the preceding winter to June. In contrast, the second jump was positively related to ENSO in the preceding winter, but this correlation tended to weaken with the decay of ENSO and disappeared in July. Instead, a positive correlation was found in the Indian Ocean. We therefore suggest that ENSO plays an indirect role in the second jump through the capacitor effect of the Indian Ocean.展开更多
The unprecedented Zhengzhou heavy rainfall in July 2021 occurred under the background of a northward shift of the western Pacific subtropical high(WPSH).Although the occurrence of this extreme event could not be captu...The unprecedented Zhengzhou heavy rainfall in July 2021 occurred under the background of a northward shift of the western Pacific subtropical high(WPSH).Although the occurrence of this extreme event could not be captured by seasonal predictions,a skillful prediction of the WPSH variation might have warned us of the increased probability of extreme weather events in Central and Northern China.However,the mechanism for the WPSH variation in July 2021 and its seasonal predictability are still unknown.Here,the observed northward shift of the WPSH in July 2021 is shown to correspond to a meridional dipole pattern of the 850-hPa geopotential height to the east of China,the amplitude of which became the strongest since 1979.The meridional dipole pattern is two nodes of the Pacific–Japan pattern.To investigate the predictability of the WPSH variation,a 21-member ensemble of seasonal predictions initiated from the end of June 2021 was conducted.The predictable and unpredictable components of the meridional dipole pattern were identified from the ensemble simulations.Its predictable component is driven by positive precipitation anomalies over the tropical western Pacific.The positive precipitation anomalies are caused by positive horizonal advection of the mean moist enthalpy by southwesterly anomalies to the northwestern flank of anticyclonic anomalies excited by the existing La Niña,which is skillfully predicted by the model.The leading mode of the unpredictable component is associated with the atmospheric internal intraseasonal oscillations,which are not initialized in the simulations.The relative contributions of the predictable and unpredictable components to the observed northward shift of the WPSH at 850 hPa are 28.0%and 72.0%,respectively.展开更多
This study investigates the circulation and precipitation anomalies associated with different configurations of the western North Pacific subtropical high(WNPSH)and the East Asian westerly jet(EAJ)in summer on interan...This study investigates the circulation and precipitation anomalies associated with different configurations of the western North Pacific subtropical high(WNPSH)and the East Asian westerly jet(EAJ)in summer on interannual timescales.The in-phase configuration of the WNPSH and EAJ is characterized by the westward(eastward)extension of the WNPSH and the southward(northward)shift of the EAJ,which is consistent with the general correspondence between their variations.The out-of-phase configuration includes the residual cases.We find that the in-phase configuration manifests itself as a typical meridional teleconnection.For instance,there is an anticyclonic(cyclonic)anomaly over the tropical western North Pacific and a cyclonic(anticyclonic)anomaly over the mid-latitudes of East Asia in the lower troposphere.These circulation anomalies are more conducive to rainfall anomalies over the Yangtze River basin and south Japan than are the individual WNPSH or EAJ.By contrast,for the out-of-phase configuration,the mid-latitude cyclonic(anticyclonic)anomaly is absent,and the lower-tropospheric circulation anomalies feature an anticyclonic(cyclonic)anomaly with a large meridional extension.Correspondingly,significant rainfall anomalies move northward to North China and the northern Korean Peninsula.Further results indicate that the out-of-phase configuration is associated with the developing phase of ENSO,with strong and significant sea surface temperature(SST)anomalies in the tropical central and eastern Pacific which occur simultaneously during summer and persist into the following winter.This is sharply different from the in-phase configuration,for which the tropical SSTs are not a necessity.展开更多
1 INTRODUCTION In summer, different assembly of the intensity, location and vertical structure of the subtropical high and the earlier/later time of its seasonal northwards jump bring about different precipitation pat...1 INTRODUCTION In summer, different assembly of the intensity, location and vertical structure of the subtropical high and the earlier/later time of its seasonal northwards jump bring about different precipitation patterns over China. Therefore, subtropical high activity and its cause during the occurrence of extreme climatic event over China and the cause of China drought/flood are studied to improve weather forecasting.展开更多
Weather and climate in East China are closely related to the variability of the western Pacific subtropical high(WPSH), which is an important part of the Asian monsoon system. The WPSH prediction in spring and summer ...Weather and climate in East China are closely related to the variability of the western Pacific subtropical high(WPSH), which is an important part of the Asian monsoon system. The WPSH prediction in spring and summer is a critical component of rainfall forecasting during the summer flood season in China. Although many attempts have been made to predict WPSH variability, its predictability remains limited in practice due to the complexity of the WPSH evolution. Many studies have indicated that the sea surface temperature(SST) over the tropical Indian Ocean has a significant effect on WPSH variability. In this paper, a statistical model is developed to forecast the monthly variation in the WPSH during the spring and summer seasons on the basis of its relationship with SST over the tropical Indian Ocean. The forecasted SST over the tropical Indian Ocean is the predictor in this model, which differs significantly from other WPSH prediction methods. A 26-year independent hindcast experiment from 1983 to 2008 is conducted and validated in which the WPSH prediction driven by the combined forecasted SST is compared with that driven by the persisted SST. Results indicate that the skill score of the WPSH prediction driven by the combined forecasted SST is substantial.展开更多
Index series of Subtropical High over the western Pacific was extended to AD 1880 by using of statistical and modeling method. Reconstructed indices by both methods show good accordance each other. Association of the ...Index series of Subtropical High over the western Pacific was extended to AD 1880 by using of statistical and modeling method. Reconstructed indices by both methods show good accordance each other. Association of the indices to the rainfall patterns over eastern China indicated the robustness of the reconstructions.展开更多
It is well known that on the interannual timescale,the westward extension of the western North Pacific subtropical high(WNPSH)results in enhanced rainfall over the Yangtze River basin(YRB)in summer,and vice versa.This...It is well known that on the interannual timescale,the westward extension of the western North Pacific subtropical high(WNPSH)results in enhanced rainfall over the Yangtze River basin(YRB)in summer,and vice versa.This study identifies that this correspondence experiences a decadal change in the late 1970s.That is,the WNPSH significantly affects YRB precipitation(YRBP)after the late 1970s(P2)but not before the late 1970s(P1).It is found that enhanced interannual variability of the WNPSH favors its effect on YRB rainfall in P2.On the other hand,after removing the strong WNPSH cases in P2 and making the WNPSH variability equivalent to that in P1,the WNPSH can still significantly affect YRB rainfall,suggesting that the WNPSH variability is not the only factor that affects the WNPSH-YRBP relationship.Further results indicate that the change in basic state of thermal conditions in the tropical WNP provides a favorable background for the enhanced WNPSH-YRBP relationship.In P2,the lower-tropospheric atmosphere in the tropical WNP gets warmer and wetter,and thus the meridional gradient of climatological equivalent potential temperature over the YRB is enhanced.As a result,the WNPSH-related circulation anomalies can more effectively induce YRB rainfall anomalies through affecting the meridional gradient of equivalent potential temperature over the YRB.展开更多
The performances of CMIP5 atmospheric general circulation models (AGCMs) in simulating the western North Pacific subtropical high (WNPSH) in El Nino decaying summers are examined in this study. Results show that m...The performances of CMIP5 atmospheric general circulation models (AGCMs) in simulating the western North Pacific subtropical high (WNPSH) in El Nino decaying summers are examined in this study. Results show that most models can reproduce the spatial pattern of both climatological and anomalous circulation associated with the WNPSH in El Nino decaying summers. Most CMIP5 AGCMs can capture the westward shift of the WNPSH in El Nino decaying summers compared with the climatological location. With respect to the sub-seasonal variation of the WNPSH, the performances of these AGCMs in reproducing the northward jump of the WNPSH are better than simulating the eastward retreat of the WNPSH from July to August. Twenty-one out of twenty-two (20 out of 22) models can reasonably reproduce the northward jump of the WNPSH in El Nino decaying summers (climatology), while only 7 out of 22 (8 out of 22) AGCMs can reasonably reproduce the eastward retreat of the WNPSH in El Nino decaying summers (climatology). In addition, there is a close connection between the climatological WNPSH location bias and that in El Nino decaying summers.展开更多
The NCEP/NCAR II daily mean reanalysis data and observed precipitation data are employed to investigate the westward extension of the western Pacific subtropical high (WPSH) during the heavy rain period over the south...The NCEP/NCAR II daily mean reanalysis data and observed precipitation data are employed to investigate the westward extension of the western Pacific subtropical high (WPSH) during the heavy rain period over the southern China in June 2005. Results show that there may exist a relationship between the east-west shift of the WPSH and the process of a southern China heavy rain. The analysis indicates that the vertical motion in the WPSH area is mainly caused by the latent heat release of monsoon rain belts on its northern and southern sides. The vertical motion could cause the accumulation of air mass in the center and west of the WPSH, which leads to its strengthening. The appearance of the northern and southern monsoon rain belts could not only enhance the WPSH by strengthening the descending draft, but also excite the development of positive vorticity and restrict the WPSH's movement in the north-south direction. Moreover, the Indian monsoon rainfall to the west of the WPSH may excite the development of anticyclonic vorticity on its eastern side, which leads to the westward extension of the WPSH.展开更多
Previous studies have demonstrated that the western Pacific subtropical high(WPSH)has experienced an eastward retreat since the late 1970s.In this study,the authors propose that this eastward retreat of the WPSH can b...Previous studies have demonstrated that the western Pacific subtropical high(WPSH)has experienced an eastward retreat since the late 1970s.In this study,the authors propose that this eastward retreat of the WPSH can be partly attributed to atmospheric responses to the positive phase of the Pacific decadal oscillation(PDO),based on idealized SST forcing experiments using the Community Atmosphere Model,version 4.Associated with the positive phase of the PDO,convective heating from the Indian Peninsula to the western Pacific and over the eastern tropical Pacific has increased,which has subsequently forced a Gill-type response to modulate the WPSH.The resulting cyclonic gyre over the Asian continent and the western Pacific in the lower troposphere is favorable for the eastward retreat of the WPSH.Additionally,the resulting anticyclonic gyre in the upper troposphere is favorable for the strengthening and southward expansion of the East Asian westerly jet,which can modulate the jet-related secondary meridional-vertical circulation over the western Pacific and promote the eastward retreat of the WPSH.展开更多
This study reveals that the interannual variability of the western edge of the western North Pacific(WNP)subtropical high(WNPSH)in early summer experienced an interdecadal decrease around 1990.Correspondingly,the zona...This study reveals that the interannual variability of the western edge of the western North Pacific(WNP)subtropical high(WNPSH)in early summer experienced an interdecadal decrease around 1990.Correspondingly,the zonal movement of the WNPSH and the zonal extension of the high-pressure anomaly over the WNP(WNPHA)in abnormal years possess smaller ranges after 1990.The different influences of the tropical SSTAs are important for this interdecadal change,which exhibit slow El Nino decaying pattern before 1990 while rapid transformation from El Nino to La Nina after 1990.The early summer tropical SSTAs and the relevant atmospheric circulation anomalies present obvious interdecadal differences.Before 1990,the warm SSTAs over the northern Indian Ocean and southern South China Sea favor the WNPHA through eastward-propagating Kelvin wave and meridional-vertical circulation,respectively.Meanwhile,the warm SSTA over the tropical central Pacific induces anomalous ascent to its northwest through the Gill response,which could strengthen the anomalous descent over the WNP through meridional-vertical circulation and further favor the eastward extension of the WNPHA to central Pacific.After 1990,the warm SSTAs over the Maritime Continent and northern Indian Ocean cause the WNPHA through meridional-vertical and zonal-vertical circulation,respectively.Overall,the anomalous warm SSTs and ascent and the resultant anomalous descent over the WNP are located more westward and southward after 1990 than before 1990.Consequently,the WNPHA features narrower zonal range and less eastward extension after 1990,corresponding to the interdecadal decease in the interannual variability of the western edge of the WNPSH.On the other hand,the dominant oscillation period of ENSO experienced an interdecadal reduction around 1990,contributing to the change of the El Nino SSTA associated with the anomalous WNPSH from slow decaying type to rapid transformation type.展开更多
Numerical experiments are carried out using a global spectral model to study the role of an ideal heating source over the western tropical Pacific region in a medium-term weather process that marks the western advance...Numerical experiments are carried out using a global spectral model to study the role of an ideal heating source over the western tropical Pacific region in a medium-term weather process that marks the western advancement of the subtropical high in mid-June 1979. The result has indicated that the effect of the ideal heating source is evident in about 4 days after the inclusion in the high and the circulation at mid-and high-latitudes over the eastern part of China; the disturbance produced over the tropical ocean first transfers towards the northwest along the easterly flow on the southern edge of the subtropical high and then divides into two branches as it moves over the westerly over the mid-latitude area, one continuing the journey northwestward and the other turning to the northeast by east, resulting in changes in the subtropical high and the westerly through combined action.展开更多
基金supported jointly by the National Natural Science Foundation of China(Grant No.91337216)the Special Fund for Public Welfare Industry(Meteorology),administered by the Chinese Ministry of Finance and the Ministry of Science and Technology(Grant No.GYHY201406001)the CAS XDA(Grant No.11010402)
文摘The impact of surface sensible heating over the Tibetan Plateau (SHTP) on the western Pacific subtropical high (WPSH) with and without air-sea interaction was investigated in this study. Data analysis indicated that SHTP acts as a relatively independent factor in modulating the WPSH anomaly compared with ENSO events. Stronger spring SHTP is usually fol- lowed by an enhanced and westward extension of the WPSH in summer, and vice versa. Numerical experiments using both an AGCM and a CGCM confirmed that SHTP influences the large-scale circulation anomaly over the Pacific, which features a barotropic anticyclonic response over the northwestern Pacific and a cyclonic response to the south. Owing to different background circulation in spring and summer, such a response facilitates a subdued WPSH in spring but an en- hanced WPSH in summer. Moreover, the CGCM results showed that the equatorial low-level westerly at the south edge of the cyclonic anomaly brings about a warm SST anomaly (SSTA) in the equatorial central Pacific via surface warm advection. Subsequently, an atmospheric Rossby wave is stimulated to the northwest of the warm SSTA, which in turn enhances the at- mospheric dipole anomalies over the western Pacific. Therefore, the air-sea feedbacks involved tend to reinforce the effect of SHTP on the WPSH anomaly, and the role of SHTP on general circulation needs to be considered in a land-air-sea interaction framework.
基金supported by the National Science Foundation of China(Grant Nos.41475052 and 41405058)
文摘Both 1981 and 2013 were weak La Nifia years with a similar sea surface temperature (SST) anomaly in the tropical Pacific, yet the westem Pacific subtropical high (WPSH) during August exhibited an opposite anomaly in the two years. A comparison indicates that, in the absence of a strong SST anomaly in the tropics, the cold advection from Eurasian high latitudes and the convection of the western Pacific warm pool play important roles in influencing the strength and position of the WPSH in August. In August 1981, the spatial pattern of 500 hPa geopotential height was characterized by a meridional circulation with a strong ridge in the Ural Mountains and a deep trough in Siberia, which provided favorable conditions for cold air invading into the lower latitudes. Accordingly, the geopotential height to the north of the WPSH was reduced by the cold advection anomaly from high latitudes, resulting in an eastward retreat of the WPSH. Moreover, an anomalous cyclonic circulation in the subtropical western Pacific, excited by enhanced warm pool convection, also contributed to the eastward retreat of the WPSH. By contrast, the influence from high latitudes was relatively weak in August 2013 due to a zonal circulation pattern over Eurasia, and the anomalous anticyclonic circulation induced by suppressed warm pool convection also facilitated the westward extension of the WPSH. Therefore, the combined effects of the high latitude and tropical circulations may contribute a persistent anomaly of the WPSH in late summer, despite the tropical SST anomaly being weak.
基金supported by the National Natural Science Foundation of China(Grant No.41475039)the National Key Basic Research Program of China(Grant No.2015CB-953601)a China Postdoctoral Science Foundation-funded project(Grant No.2015M570500)
文摘The interdecadal variation of the summer western Pacific subtropical high(WPSH)during1948–2009 is investigated in this study.Compared with most previous works,which focused on the 500 h Pa geopotential height,the interdecadal variation of the horizontal winds,relative vorticity,and eddy geopotential height over the western Pacific are all analyzed.The weakened anticyclone and decreased negative relative vorticity at middle-low levels over the western Pacific suggest that the WPSH weakened during 1979–2009 relative to1948–78.After subtracting the zonal belt mean height between 0°and 40°N,the 500 hP a eddy geopotential height with significant negative anomalies over the western Pacific can correctly depict this weakened interdecadal variation of the WPSH.The illusory westward extension signal reflected by the 500 h Pa geopotential height may derive from the significant increment of the geopotential height at middle and lower latitudes in the late 1970s under global warming.
基金National Developing Program for Basic Sciences No.1998040900National Natural Science Foundation of China No. 40105007
文摘Western North Pacific Subtropical High is a very important atmospheric circulation system influencing the summer climate over eastern China. Its interdecadal change is analyzed in this study. There is a significant decadal shift in about 1979/1980. Since 1980, the Western North Pacific Subtropical High has enlarged, intensified, and shifted southwestward. This change gives rise to an anti-cyclonic circulation anomaly over the region from the South China Sea to western Pacific and thus causes wet anomalies over the Yangtze River valley. During the summers of 1980-1999, the precipitation is 63.9 mm above normal, while during 1958-1979 it is 27.3 mm below normal. The difference is significant at the 99% confidence level as a t-test shown. The southwestward expanding of the Western North Pacific Subtropical High also leads to a significant warming in southern China, during 1980-1999 the summer mean temperature is 0.37篊 warmer than that of the period 1958-1979. The strong warming is primarily due to the clearer skies associated with the stronger downward air motion as the Western North Pacific Subtropical High expanding to the west and controlling southern China. It is also found that the relative percentage of tropical cyclones in the regions south of 20篘 is decreasing since the 1980s, but in the regions north of 20篘 that is increasing at the same time. The Western North Pacific Subtropical High responds significantly to sea surface temperature of the tropical eastern Pacific with a lag of one-two seasons and simultaneously to sea surface temperature of the tropical Indian Ocean. The changes in the sea surface temperatures are mainly responsible for the interdecadal variability of the Western North Pacific Subtropical High.
基金supported by the National Science Foundation of China (Grant Nos. 41475052 and 41630530)
文摘The anomalous behavior of the western Pacific subtropical high (WPSH) in E1 Nifio developing summer is studied based on the composite results of eight major E1 Nifio events during 1979-2013. It is shown that the WPSH tends to retreat eastwards with weak intensity during the developing summer. The anomaly exhibits an intraseasonal variation with a weaker anomaly in June and July and a stronger anomaly in August, indicating that different underlying physical mechanisms may be responsible for the anomalous WPSH during early and late summer periods. In June and July, owing to the cold advection anomaly characterized as a weak northerly anomaly from high latitudes, geopotential height in East Asia is reduced and the WPSH tends to retreat eastwards slightly. By contrast, enhanced convection over the warm pool in August makes the atmosphere more sensitive to E1 Nifio forcing. Consequently, a cyclonic anomaly in the western Pacific is induced, which is consistent with the seasonal march of atmospheric circulation from July to August. Accordingly, geopotential height in the western Pacific is reduced significantly, and the WPSH tends to retreat eastwards remarkably in August. Different from the developing summer, geopotential height in the decaying summer over East Asia and the western Pacific tends to enhance and extend northwards from June to August consistently, reaching the maximum anomaly in August. Therefore, the seasonal march plays an important role in the WPSH anomaly for both the developing and decaying summer.
基金The National Natural Science Foundation of China (No.49635170)The program of Study on Regional Climate Variation and Mechani
文摘The paper investigates the vertical circulation structure of the western Pacific subtropical high (STH) and its interannual variation features in relation tO East Asian subtropical summer monsoon and external thermal forcing by using the high-resolution and good-quality observations from the 1998 South China Sea Summer Monsoon Experiment (SCSMEX), the NCEP 40-year reanalysis data and relevant SST and the STH parameters. It is found that the vertical circulation structures differ greatly in features between quasi-Stationary and transient components of the western Pacific STH. When rainstorms happen in the rainband of East Asian subtropical monsoon on the STH north side, the downdrafts are distinct around the ridge at a related meridian. The sinking at high (low) levels comes from the north (south) side of the STH, thereby revealing that the high is a tie between tropical and extratropical systems. The analyses of this paper suggest that the latent heat release associated with subtropical monsoon precipitation, the offshore SST and East Asian land-sea thermal contrast have a significant effect on the STH interannual anomaly. Our numerical experiment shows that the offshore SSTA-caused sensible heating may excite an anomalous anticyclonic circulation on the west side, which affects the intensity (area) and meridional position of the western Pacific STH.
文摘In this paper, a close relationship between the intraseasonal variation of subtropical high over East Asia and the convective activities around the South China Sea and the Philippines is analysed from OLR data.This relationship is studied by using the theory of wave propagating in a slowly varying medium and by using a quasi-geoslrophic, linear, spherical model and the IAP-GCM, respectively. The results show that when the SST is warming around the western tropical Pacific or the Philippines, the convective activities are intensified around the Philippines. As a consequence, the subtropical high will be intensified over East Asia. The computed results also show that when the anomaly of convective activities are caused around the Philippines, a teleconnection pattern of circulation anomalies will be caused over South Asia, East Asia and North America.
基金National Key Basic Research and Development Planning Program of China(Program 973)(2013CB430202)China Special Fund for Meteorological Research in the Public Interest(Major Projects)(GYHY201506001-1)National Natural Science Foundation of China(91337109,41305080)
文摘By adopting characteristic index data for the Western Pacific Subtropical High(WPSH) from the National Climate Center of China, U.S. National Centers for Environmental Prediction-National Center for Atmospheric Research(NCEP/NCAR) reanalysis data, and the National Oceanic and Atmospheric Administration(NOAA) sea surface temperature(SST) data, we studied the WPSH variability considering the background of climate warming by using a Gaussian filter, moving averages, correlation analysis, and synthetic analysis. Our results show that with climate warming over the past 60 years, significant changes in the WPSH include its enlarged area, strengthened intensity,westward extended ridge point and southward expanded southern boundary, as well as enhanced interannual fluctuations in all these indices. The western ridge point of the WPSH consistently varies with temperature changes in the Northern Hemisphere, but the location of the ridgeline varies independently. The intensity and area of the WPSH were both significantly increased in the late 1980 s. Specifically, the western ridge point started to significantly extend westward in the early 1990 s, and the associated interannual variability had a significant increase in the late 1990 s; in addition, the ridgeline was swaying along the north-south-north direction, and the corresponding variability was also greatly enhanced in the late 1990 s. With climate warming, the SST increase becomes more weakly correlated with the WPSH intensity enhancement but more strongly correlated with the westward extension of the ridge point in the equatorial central and eastern Pacific Ocean in winter, corresponding to an expanding WPSH in space. In the northern Pacific in winter, the SST decrease has a weaker correlation with the southerly location of the ridgeline but also a stronger correlation with the westward extension of the ridge point. In the tropical western Pacific in winter, the correlations of the SST decrease with the WPSH intensity enhancement, and the westward extension of the ridge point is strengthened. These observations can be explained by strengthened Hadley circulations, the dominant effects of the southward shift, and additional effects of the weakened ascending branch of the Walker circulation during warm climatological periods,which consequently lead to strengthened intensities, increased areas, and southward expansions of the WPSH in summer.
基金supported by the National Basic Research Program of China(Grant No.2010CB951901)the National Natural Science Foundation of China(Grant No.40821092)
文摘Based on the pentad mean ridgeline index of the western Pacific subtropical high (WPSH), the authors identified the two northward jumps of the WPSH from 1979 to 2008 and revealed their associations with the tropical SST anomalies. The authors show that the northward jumps, especially the second jump, exhibited remarkable interannual variability. In addition, the authors find that the two northward jumps were mutually independent and were influenced by the SST anomalies in the different regions of the tropical Pacific. The first jump was positively correlated with the SST anomalies in the tropical central Pacific from the preceding winter to June. In contrast, the second jump was positively related to ENSO in the preceding winter, but this correlation tended to weaken with the decay of ENSO and disappeared in July. Instead, a positive correlation was found in the Indian Ocean. We therefore suggest that ENSO plays an indirect role in the second jump through the capacitor effect of the Indian Ocean.
基金supported by the National Natural Science Foundation of China under Grant No.41988101the Chinese Academy of Sciences under Grant XDA20060102the China Postdoctoral Science Foundation under Grant No.2022T150638 and K.C.Wong Education Foundation.
文摘The unprecedented Zhengzhou heavy rainfall in July 2021 occurred under the background of a northward shift of the western Pacific subtropical high(WPSH).Although the occurrence of this extreme event could not be captured by seasonal predictions,a skillful prediction of the WPSH variation might have warned us of the increased probability of extreme weather events in Central and Northern China.However,the mechanism for the WPSH variation in July 2021 and its seasonal predictability are still unknown.Here,the observed northward shift of the WPSH in July 2021 is shown to correspond to a meridional dipole pattern of the 850-hPa geopotential height to the east of China,the amplitude of which became the strongest since 1979.The meridional dipole pattern is two nodes of the Pacific–Japan pattern.To investigate the predictability of the WPSH variation,a 21-member ensemble of seasonal predictions initiated from the end of June 2021 was conducted.The predictable and unpredictable components of the meridional dipole pattern were identified from the ensemble simulations.Its predictable component is driven by positive precipitation anomalies over the tropical western Pacific.The positive precipitation anomalies are caused by positive horizonal advection of the mean moist enthalpy by southwesterly anomalies to the northwestern flank of anticyclonic anomalies excited by the existing La Niña,which is skillfully predicted by the model.The leading mode of the unpredictable component is associated with the atmospheric internal intraseasonal oscillations,which are not initialized in the simulations.The relative contributions of the predictable and unpredictable components to the observed northward shift of the WPSH at 850 hPa are 28.0%and 72.0%,respectively.
基金the National Natural Science Foundation of China(Grant Nos.41905055 and 41721004)the Natural Science Foundation of Jiangsu Province(Grant No.BK20190500)the Fundamental Research Funds for the Central Universities(Grant No.B200202145).
文摘This study investigates the circulation and precipitation anomalies associated with different configurations of the western North Pacific subtropical high(WNPSH)and the East Asian westerly jet(EAJ)in summer on interannual timescales.The in-phase configuration of the WNPSH and EAJ is characterized by the westward(eastward)extension of the WNPSH and the southward(northward)shift of the EAJ,which is consistent with the general correspondence between their variations.The out-of-phase configuration includes the residual cases.We find that the in-phase configuration manifests itself as a typical meridional teleconnection.For instance,there is an anticyclonic(cyclonic)anomaly over the tropical western North Pacific and a cyclonic(anticyclonic)anomaly over the mid-latitudes of East Asia in the lower troposphere.These circulation anomalies are more conducive to rainfall anomalies over the Yangtze River basin and south Japan than are the individual WNPSH or EAJ.By contrast,for the out-of-phase configuration,the mid-latitude cyclonic(anticyclonic)anomaly is absent,and the lower-tropospheric circulation anomalies feature an anticyclonic(cyclonic)anomaly with a large meridional extension.Correspondingly,significant rainfall anomalies move northward to North China and the northern Korean Peninsula.Further results indicate that the out-of-phase configuration is associated with the developing phase of ENSO,with strong and significant sea surface temperature(SST)anomalies in the tropical central and eastern Pacific which occur simultaneously during summer and persist into the following winter.This is sharply different from the in-phase configuration,for which the tropical SSTs are not a necessity.
基金Research on Floods-Causing Heavy Rains in the Valley of Huaihe River in 2003, a projectfrom the National Meteorological Center
文摘1 INTRODUCTION In summer, different assembly of the intensity, location and vertical structure of the subtropical high and the earlier/later time of its seasonal northwards jump bring about different precipitation patterns over China. Therefore, subtropical high activity and its cause during the occurrence of extreme climatic event over China and the cause of China drought/flood are studied to improve weather forecasting.
基金supported by the National Basic Research Program of China(Grant No.2012CB417404)the National Natural Science Foundation of China(Grant Nos.41075064 and41176014)
文摘Weather and climate in East China are closely related to the variability of the western Pacific subtropical high(WPSH), which is an important part of the Asian monsoon system. The WPSH prediction in spring and summer is a critical component of rainfall forecasting during the summer flood season in China. Although many attempts have been made to predict WPSH variability, its predictability remains limited in practice due to the complexity of the WPSH evolution. Many studies have indicated that the sea surface temperature(SST) over the tropical Indian Ocean has a significant effect on WPSH variability. In this paper, a statistical model is developed to forecast the monthly variation in the WPSH during the spring and summer seasons on the basis of its relationship with SST over the tropical Indian Ocean. The forecasted SST over the tropical Indian Ocean is the predictor in this model, which differs significantly from other WPSH prediction methods. A 26-year independent hindcast experiment from 1983 to 2008 is conducted and validated in which the WPSH prediction driven by the combined forecasted SST is compared with that driven by the persisted SST. Results indicate that the skill score of the WPSH prediction driven by the combined forecasted SST is substantial.
基金This work was supported by the National Key Programme for Developing Basic Sciences (G1998040900-Part-1).
文摘Index series of Subtropical High over the western Pacific was extended to AD 1880 by using of statistical and modeling method. Reconstructed indices by both methods show good accordance each other. Association of the indices to the rainfall patterns over eastern China indicated the robustness of the reconstructions.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.41905055 and 41721004)the Natural Science Foundation of Jiangsu Province(Grant No.BK20190500)the Fundamental Research Funds for the Central Universities(Grant No.B200202145).
文摘It is well known that on the interannual timescale,the westward extension of the western North Pacific subtropical high(WNPSH)results in enhanced rainfall over the Yangtze River basin(YRB)in summer,and vice versa.This study identifies that this correspondence experiences a decadal change in the late 1970s.That is,the WNPSH significantly affects YRB precipitation(YRBP)after the late 1970s(P2)but not before the late 1970s(P1).It is found that enhanced interannual variability of the WNPSH favors its effect on YRB rainfall in P2.On the other hand,after removing the strong WNPSH cases in P2 and making the WNPSH variability equivalent to that in P1,the WNPSH can still significantly affect YRB rainfall,suggesting that the WNPSH variability is not the only factor that affects the WNPSH-YRBP relationship.Further results indicate that the change in basic state of thermal conditions in the tropical WNP provides a favorable background for the enhanced WNPSH-YRBP relationship.In P2,the lower-tropospheric atmosphere in the tropical WNP gets warmer and wetter,and thus the meridional gradient of climatological equivalent potential temperature over the YRB is enhanced.As a result,the WNPSH-related circulation anomalies can more effectively induce YRB rainfall anomalies through affecting the meridional gradient of equivalent potential temperature over the YRB.
基金supported by the National Natural Science Foundation of China[grant numbers 41475052,41405058]China Postdoctoral Science Foundation[grant number 2015M571095]Strategic Priority Research Program of the Chinese Academy of Sciences[grant number XDA11010403]
文摘The performances of CMIP5 atmospheric general circulation models (AGCMs) in simulating the western North Pacific subtropical high (WNPSH) in El Nino decaying summers are examined in this study. Results show that most models can reproduce the spatial pattern of both climatological and anomalous circulation associated with the WNPSH in El Nino decaying summers. Most CMIP5 AGCMs can capture the westward shift of the WNPSH in El Nino decaying summers compared with the climatological location. With respect to the sub-seasonal variation of the WNPSH, the performances of these AGCMs in reproducing the northward jump of the WNPSH are better than simulating the eastward retreat of the WNPSH from July to August. Twenty-one out of twenty-two (20 out of 22) models can reasonably reproduce the northward jump of the WNPSH in El Nino decaying summers (climatology), while only 7 out of 22 (8 out of 22) AGCMs can reasonably reproduce the eastward retreat of the WNPSH in El Nino decaying summers (climatology). In addition, there is a close connection between the climatological WNPSH location bias and that in El Nino decaying summers.
基金Research on the Theory and Methods for the Diagnosis and Prediction of Flood-Inflicting Heavy Rains in Southern China (2004CB418304)a key national project for fundamental research program National Natural Science Foundation of China (40575045)
文摘The NCEP/NCAR II daily mean reanalysis data and observed precipitation data are employed to investigate the westward extension of the western Pacific subtropical high (WPSH) during the heavy rain period over the southern China in June 2005. Results show that there may exist a relationship between the east-west shift of the WPSH and the process of a southern China heavy rain. The analysis indicates that the vertical motion in the WPSH area is mainly caused by the latent heat release of monsoon rain belts on its northern and southern sides. The vertical motion could cause the accumulation of air mass in the center and west of the WPSH, which leads to its strengthening. The appearance of the northern and southern monsoon rain belts could not only enhance the WPSH by strengthening the descending draft, but also excite the development of positive vorticity and restrict the WPSH's movement in the north-south direction. Moreover, the Indian monsoon rainfall to the west of the WPSH may excite the development of anticyclonic vorticity on its eastern side, which leads to the westward extension of the WPSH.
基金funded by the Major Program of the National Natural Science Foundation of China[grant number 41991283]the National Key Research and Development Program of China[grant number 2016YFA0600703]+1 种基金the Funding of the Jiangsu Innovation&Entrepreneurship Teamthe Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institutions。
文摘Previous studies have demonstrated that the western Pacific subtropical high(WPSH)has experienced an eastward retreat since the late 1970s.In this study,the authors propose that this eastward retreat of the WPSH can be partly attributed to atmospheric responses to the positive phase of the Pacific decadal oscillation(PDO),based on idealized SST forcing experiments using the Community Atmosphere Model,version 4.Associated with the positive phase of the PDO,convective heating from the Indian Peninsula to the western Pacific and over the eastern tropical Pacific has increased,which has subsequently forced a Gill-type response to modulate the WPSH.The resulting cyclonic gyre over the Asian continent and the western Pacific in the lower troposphere is favorable for the eastward retreat of the WPSH.Additionally,the resulting anticyclonic gyre in the upper troposphere is favorable for the strengthening and southward expansion of the East Asian westerly jet,which can modulate the jet-related secondary meridional-vertical circulation over the western Pacific and promote the eastward retreat of the WPSH.
基金National Key R&D Program of China(2016YFA0600601)Guangdong Basic and Applied Basic Research Foundation(2020A1515011572)Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies(2020B1212060025)。
文摘This study reveals that the interannual variability of the western edge of the western North Pacific(WNP)subtropical high(WNPSH)in early summer experienced an interdecadal decrease around 1990.Correspondingly,the zonal movement of the WNPSH and the zonal extension of the high-pressure anomaly over the WNP(WNPHA)in abnormal years possess smaller ranges after 1990.The different influences of the tropical SSTAs are important for this interdecadal change,which exhibit slow El Nino decaying pattern before 1990 while rapid transformation from El Nino to La Nina after 1990.The early summer tropical SSTAs and the relevant atmospheric circulation anomalies present obvious interdecadal differences.Before 1990,the warm SSTAs over the northern Indian Ocean and southern South China Sea favor the WNPHA through eastward-propagating Kelvin wave and meridional-vertical circulation,respectively.Meanwhile,the warm SSTA over the tropical central Pacific induces anomalous ascent to its northwest through the Gill response,which could strengthen the anomalous descent over the WNP through meridional-vertical circulation and further favor the eastward extension of the WNPHA to central Pacific.After 1990,the warm SSTAs over the Maritime Continent and northern Indian Ocean cause the WNPHA through meridional-vertical and zonal-vertical circulation,respectively.Overall,the anomalous warm SSTs and ascent and the resultant anomalous descent over the WNP are located more westward and southward after 1990 than before 1990.Consequently,the WNPHA features narrower zonal range and less eastward extension after 1990,corresponding to the interdecadal decease in the interannual variability of the western edge of the WNPSH.On the other hand,the dominant oscillation period of ENSO experienced an interdecadal reduction around 1990,contributing to the change of the El Nino SSTA associated with the anomalous WNPSH from slow decaying type to rapid transformation type.
文摘Numerical experiments are carried out using a global spectral model to study the role of an ideal heating source over the western tropical Pacific region in a medium-term weather process that marks the western advancement of the subtropical high in mid-June 1979. The result has indicated that the effect of the ideal heating source is evident in about 4 days after the inclusion in the high and the circulation at mid-and high-latitudes over the eastern part of China; the disturbance produced over the tropical ocean first transfers towards the northwest along the easterly flow on the southern edge of the subtropical high and then divides into two branches as it moves over the westerly over the mid-latitude area, one continuing the journey northwestward and the other turning to the northeast by east, resulting in changes in the subtropical high and the westerly through combined action.