By the numberical calculation of dynamic lining pressure distributions,temperature fields and thermal stress fields of steel plates,a method using nonlinear finite element techniques to analyze failure mechanism of a ...By the numberical calculation of dynamic lining pressure distributions,temperature fields and thermal stress fields of steel plates,a method using nonlinear finite element techniques to analyze failure mechanism of a multiple disc wet brake is detailed ,and some measures for combatting these failures are provided展开更多
To study the distribution and dissipation of braking power of wet multidisc brake and determine thermal load and thermal flux distribution between mated discs, the concept of distributing brake power four times was pu...To study the distribution and dissipation of braking power of wet multidisc brake and determine thermal load and thermal flux distribution between mated discs, the concept of distributing brake power four times was put forward. The third and the fourth distribution of brake power were calculated by using finite element(FE) software ANSYS. The third and the fourth distribution of wet multidisc brake are mainly related to material characteristics of discs during emergency braking, while most of the braking power is carried off during continuous braking. Basis is provided for further analysis of disc failure and applicability of different friction materials.展开更多
This paper applies the stochastic finite element method to analyse the statistics of stresses in earth dams and assess the safety and reliability of the dams. Formulations of the stochastic finite element method are b...This paper applies the stochastic finite element method to analyse the statistics of stresses in earth dams and assess the safety and reliability of the dams. Formulations of the stochastic finite element method are briefly reviewed and the procedure for assessing dam's strength and stability is described. As an example, a detailed analysis for an actual dam Nululin dam is performed. A practical method for studying built-dams based on the prototype observation data is described.展开更多
基于光滑粒子流体动力学-有限元法(smoothed particle hydrodynamics-finite element method,SPH-FEM)耦合的数值方法,分别从结构破坏形态、冲击力时程、关键点位移和速度、系统能量等方面,研究含大石块泥石流冲击作用下框架结构房屋的...基于光滑粒子流体动力学-有限元法(smoothed particle hydrodynamics-finite element method,SPH-FEM)耦合的数值方法,分别从结构破坏形态、冲击力时程、关键点位移和速度、系统能量等方面,研究含大石块泥石流冲击作用下框架结构房屋的动力响应和破坏机理。计算结果表明:SPH-FEM耦合方法能够较好地模拟泥石流冲击爬高、绕流扩散、淤积稳定过程。考虑了三种泥石流强度等级,在低、中强度冲击情况下,框架房屋填充墙受到破坏,房屋结构整体保持稳定;在高强度冲击情况下,可以观察到框架房屋的逐步倒塌过程,框架柱损坏模式体现了剪切破坏或塑性铰链失效机制。对于房屋结构而言,泥石流的冲击破坏能力主要来自龙头的冲击力,龙身冲击力相对于龙头降幅约34.2%,大石块的集中作用是结构柱体局部破坏的主要原因。系统能量主要通过泥石流动能转化为结构内能(17.8%)和摩擦耗能(82.8%)。展开更多
Evidence from recent earthquakes has shown destructive consequences of fault-induced permanent ground movement on structures.Such observations have increased the demand for improvements in the design of structures tha...Evidence from recent earthquakes has shown destructive consequences of fault-induced permanent ground movement on structures.Such observations have increased the demand for improvements in the design of structures that are dramatically vulnerable to surface fault ruptures.In this study a novel connection between the raft and the piles is proposed to mitigate the hazards associated with a normal fault on pile-raft systems by means of 3D finite element(FE)modeling.Before embarking on the parametric study,the strain-softening constitutive law used for numerical modeling of the sand has been validated against centrifuge test results.The exact location of the fix-head and unconnected pile-raft systems relative to the outcropping fault rupture in the free-field is parametrically investigated,revealing different failure mechanisms.The performance of the proposed connection for protecting the pile-raft system against normal fault-induced deformations is assessed by comparing the geotechnical and structural responses of both types of foundation.The results indicate that the pocket connection can relatively reduce the cap rotation and horizontal and vertical displacements of the raft in most scenarios.The proposed connection decreases the bending moment response of the piles to their bending moment capacity,verging on a fault offset of 0.6 m at bedrock.展开更多
Previous failure analyses of bridges typically focus on substructure failure or superstructure failure separately. However, in an actual bridge, the seismic induced substructure failure and superstructure failure may ...Previous failure analyses of bridges typically focus on substructure failure or superstructure failure separately. However, in an actual bridge, the seismic induced substructure failure and superstructure failure may influence each other. Moreover, previous studies typically use simplified models to analyze the bridge failure; however, there are inherent defects in the calculation accuracy compared with using a detailed three-dimensional (3D) finite element (FE) model. Conversely, a detailed 3D FE model requires more computational costs, and a proper erosion criterion of the 3D elements is necessary. In this paper, a multi-scale FE model, including a corresponding erosion criterion, is proposed and validated that can significantly reduce computational costs with high precision by modelling a pseudo-dynamic test of an reinforced concrete (RC) pier. Numerical simulations of the seismic failures of a continuous RC bridge based on the multi-scale FE modeling method using LS-DYNA are performed. The nonlinear properties of the bridge, various connection strengths and bidirectional excitations are considered. The numerical results demonstrate that the failure of the connections will induce large pounding responses of the girders. The nonlinear deformation of the piers will aggravate the pounding damages. Furthermore, bidirectional earthquakes will induce eccentric poundingsto the girders and different failure modes to the adjacent piers.展开更多
文摘By the numberical calculation of dynamic lining pressure distributions,temperature fields and thermal stress fields of steel plates,a method using nonlinear finite element techniques to analyze failure mechanism of a multiple disc wet brake is detailed ,and some measures for combatting these failures are provided
文摘To study the distribution and dissipation of braking power of wet multidisc brake and determine thermal load and thermal flux distribution between mated discs, the concept of distributing brake power four times was put forward. The third and the fourth distribution of brake power were calculated by using finite element(FE) software ANSYS. The third and the fourth distribution of wet multidisc brake are mainly related to material characteristics of discs during emergency braking, while most of the braking power is carried off during continuous braking. Basis is provided for further analysis of disc failure and applicability of different friction materials.
文摘This paper applies the stochastic finite element method to analyse the statistics of stresses in earth dams and assess the safety and reliability of the dams. Formulations of the stochastic finite element method are briefly reviewed and the procedure for assessing dam's strength and stability is described. As an example, a detailed analysis for an actual dam Nululin dam is performed. A practical method for studying built-dams based on the prototype observation data is described.
文摘基于光滑粒子流体动力学-有限元法(smoothed particle hydrodynamics-finite element method,SPH-FEM)耦合的数值方法,分别从结构破坏形态、冲击力时程、关键点位移和速度、系统能量等方面,研究含大石块泥石流冲击作用下框架结构房屋的动力响应和破坏机理。计算结果表明:SPH-FEM耦合方法能够较好地模拟泥石流冲击爬高、绕流扩散、淤积稳定过程。考虑了三种泥石流强度等级,在低、中强度冲击情况下,框架房屋填充墙受到破坏,房屋结构整体保持稳定;在高强度冲击情况下,可以观察到框架房屋的逐步倒塌过程,框架柱损坏模式体现了剪切破坏或塑性铰链失效机制。对于房屋结构而言,泥石流的冲击破坏能力主要来自龙头的冲击力,龙身冲击力相对于龙头降幅约34.2%,大石块的集中作用是结构柱体局部破坏的主要原因。系统能量主要通过泥石流动能转化为结构内能(17.8%)和摩擦耗能(82.8%)。
基金Babol Noshirvani University of Technology under Grant No.P/M/1102。
文摘Evidence from recent earthquakes has shown destructive consequences of fault-induced permanent ground movement on structures.Such observations have increased the demand for improvements in the design of structures that are dramatically vulnerable to surface fault ruptures.In this study a novel connection between the raft and the piles is proposed to mitigate the hazards associated with a normal fault on pile-raft systems by means of 3D finite element(FE)modeling.Before embarking on the parametric study,the strain-softening constitutive law used for numerical modeling of the sand has been validated against centrifuge test results.The exact location of the fix-head and unconnected pile-raft systems relative to the outcropping fault rupture in the free-field is parametrically investigated,revealing different failure mechanisms.The performance of the proposed connection for protecting the pile-raft system against normal fault-induced deformations is assessed by comparing the geotechnical and structural responses of both types of foundation.The results indicate that the pocket connection can relatively reduce the cap rotation and horizontal and vertical displacements of the raft in most scenarios.The proposed connection decreases the bending moment response of the piles to their bending moment capacity,verging on a fault offset of 0.6 m at bedrock.
基金National Program on Key Basic Research Project of China(973) under Grant No.2011CB013603the National Natural Science Foundation of China under Grant Nos.51427901,91315301 and 51408410the Natural Science Foundation of Tianjin,China under Grant No.15JCQNJC07200
文摘Previous failure analyses of bridges typically focus on substructure failure or superstructure failure separately. However, in an actual bridge, the seismic induced substructure failure and superstructure failure may influence each other. Moreover, previous studies typically use simplified models to analyze the bridge failure; however, there are inherent defects in the calculation accuracy compared with using a detailed three-dimensional (3D) finite element (FE) model. Conversely, a detailed 3D FE model requires more computational costs, and a proper erosion criterion of the 3D elements is necessary. In this paper, a multi-scale FE model, including a corresponding erosion criterion, is proposed and validated that can significantly reduce computational costs with high precision by modelling a pseudo-dynamic test of an reinforced concrete (RC) pier. Numerical simulations of the seismic failures of a continuous RC bridge based on the multi-scale FE modeling method using LS-DYNA are performed. The nonlinear properties of the bridge, various connection strengths and bidirectional excitations are considered. The numerical results demonstrate that the failure of the connections will induce large pounding responses of the girders. The nonlinear deformation of the piers will aggravate the pounding damages. Furthermore, bidirectional earthquakes will induce eccentric poundingsto the girders and different failure modes to the adjacent piers.