期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
Experimental study on prediction model of wet gas pressure drop across single-orifice plate in horizontal pipes in the low gas phase Froude number region
1
作者 Youfang Ma Youfu Ma +1 位作者 Junfu Lyu Weiye Liu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第6期63-72,共10页
The pressure drop prediction of wet gas across single-orifice plate in horizontal pipes had been solved satisfactorily under an annular-mist flow in the upstream of orifice plates.However,this pressure drop prediction... The pressure drop prediction of wet gas across single-orifice plate in horizontal pipes had been solved satisfactorily under an annular-mist flow in the upstream of orifice plates.However,this pressure drop prediction is still not clearly determined when the upstream is in an intermittent flow or stratified flow,which is corresponding to a region of low FrG(gas phase Froude number)in the flow pattern map of wet gases.In this study,the wet gas pressure drop across a single-orifice plate was experimentally investigated in the low FrG region.By the experiment,the flow pattern transition in the downstream of single-orifice plates,as well as the effects of FrG and FrL(liquid phase Froude number)on UG(gas phase multiplier),were determined and compared when the upstream is in the flow pattern transition and the stratified flow region,respectively.Prediction performances were examined on the available pressure drop models.It was found that no model could be capable of jointly predicting the wet gas pressure drop in the low FrG region with an acceptable accuracy.With a new method of correlating FrG and FrL simultaneously,new correlations were proposed for the low FrG region.Among which the modified Chisholm model shows the best prediction accuracies,with the prediction deviations of UG being within 7%and 3%when the upstream is in flow pattern transition and stratified flow region,respectively. 展开更多
关键词 gas-liquid flow Two-phase flow wet gas Orifice plate Pressure drop Model
下载PDF
Influence of Chromium on Corrosion Behavior of Low-alloy Steel in Cargo Oil Tank O_2-CO_2-SO_2-H_2S Wet Gas Environment 被引量:9
2
作者 Peng ZHOU Jin-ming LIANG +2 位作者 Fei ZHANG Hui-bin WU Di TANG 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2015年第7期630-637,共8页
As international maritime organization (IMO) draft 289 was adopted to develop a low-alloy anti-corrosion steel for the deck of cargo oil tank and to understand corrosion mechanism, corrosion behavior of a low-alloy ... As international maritime organization (IMO) draft 289 was adopted to develop a low-alloy anti-corrosion steel for the deck of cargo oil tank and to understand corrosion mechanism, corrosion behavior of a low-alloy steel with chromium contents was studied in O2-CO2-SO2-H2 S wet gas environment. Corrosion rate was measured, and the microstructure and morphology of corrosion product film were characterized by scanning electron microscopy (SEM). The phase and chemical composition of the corrosion product film were investigated by X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS), respectively. The effect of misorientation distribution on corro- sion resistance of steel was evaluated by electron backscattered diffraction (EBSD). The results showed that corro- sion rate decreased with increasing chromium content in the low-alloy steel, and the corrosion type was general corrosion. The phenomenon of chromium enrichment was found in corrosion product film consisting of a-FeOOH, γ- FeOOH, sulphur, FeS2 and Fel-xS. The increase of chromium content decreases the amount of high-angle grain boundaries, thus resulting in the improvement of corrosion resistance. 展开更多
关键词 CORROSION cargo oil tank upper deck wet gas low-alloy steel CHROMIUM
原文传递
Wet flue gas desulfurization performance of 330 MW coal-fired power unit based on computational fluid dynamics region identification of flow pattern and transfer process 被引量:1
3
作者 Jiangyuan Qu Nana Qi +2 位作者 Kai Zhang Lifeng Li PengchengWang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第1期13-26,共14页
Wet Flue Gas Desulfurization(WFGD)unit based upon spray scrubber has beenwidely employed to control SO_(2) emissions from flue gas in coal-fired power plant.To clarify the dependence of desulfurization performance on ... Wet Flue Gas Desulfurization(WFGD)unit based upon spray scrubber has beenwidely employed to control SO_(2) emissions from flue gas in coal-fired power plant.To clarify the dependence of desulfurization performance on inter-phase transfer behaviors with non-ideal contacting patterns of flue gas and slurry droplets,three regions in spray scrubber are distinguished in terms of gas-slurry flow structures using CFD method in the Eulerian-Lagrangian framework.A comprehensive model is established by involving the transfer process between two phases and chemical reactions in aqueous phase,which is validatedwith the measured data froma WFGD scrubber of 330 MW coal-fired power unit.Numerical results show that the overall uniformity degree of flue gas in whole scrubber is largely determined by the force-balanced droplets in the middle part of scrubber,which is dominated by counter-current mode.Both momentum transfer behavior and SO_(2) chemical absorption process present the synchronicity with the evolution of gas-slurry flow pattern,whilst the heat transfer together with H_(2)O evaporation has little effect on overall absorption process.Three regions are firstly defined as Gas Inlet Region(GIR),Dominant Absorption Region(DAR)and Slurry Dispersed Region(SDR)from the bottom to top of scrubber.SO_(2) is mainly scrubbed in DAR,which provides much more intensive interaction between two phases compared to GIR or SDR.A better understanding of the desulfurization process is obtained from the fundamental relationship between transport phenomena and chemical reactions based upon the complicated hydrodynamics of gas-slurry two-phase flow,which should be useful for designing and optimizing the scrubber in coal-fired power unit. 展开更多
关键词 wet flue gas desulfurization gas-liquid flow Eulerian-Lagrangian model Flow pattern Transport processes ABSORPTION
下载PDF
Dynamic optimization oriented modeling and nonlinear model predictive control of the wet limestone FGD system 被引量:2
4
作者 Lukuan Yang Wenqi Zhong +2 位作者 Li Sun Xi Chen Yingjuan Shao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第3期832-845,共14页
Nonlinear model predictive control(NMPC)scheme is an effective method of multi-objective optimization control in complex industrial systems.In this paper,a NMPC scheme for the wet limestone flue gas desulphurization(W... Nonlinear model predictive control(NMPC)scheme is an effective method of multi-objective optimization control in complex industrial systems.In this paper,a NMPC scheme for the wet limestone flue gas desulphurization(WFGD)system is proposed which provides a more flexible framework of optimal control and decision-making compared with PID scheme.At first,a mathematical model of the FGD process is deduced which is suitable for NMPC structure.To equipoise the model’s accuracy and conciseness,the wet limestone FGD system is separated into several modules.Based on the conservation laws,a model with reasonable simplification is developed to describe dynamics of different modules for the purpose of controller design.Then,by addressing economic objectives directly into the NMPC scheme,the NMPC controller can minimize economic cost and track the set-point simultaneously.The accuracy of model is validated by the field data of a 1000 MW thermal power plant in Henan Province,China.The simulation results show that the NMPC strategy improves the economic performance and ensures the emission requirement at the same time.In the meantime,the control scheme satisfies the multiobjective control requirements under complex operation conditions(e.g.,boiler load fluctuation and set point variation).The mathematical model and NMPC structure provides the basic work for the future development of advanced optimized control algorithms in the wet limestone FGD systems. 展开更多
关键词 wet limestone flue gas desulphurization(WFGD)system MODELING Nonlinear model predictive control(NMPC) Multi-objective optimization
下载PDF
Calculating densities and viscosities of natural gas with a high content of C_(2+) to predict two-phase liquid-gas flow pattern 被引量:1
5
作者 Yekaterina Moisseyeva Alexandra Saitova Sergey Strokin 《Petroleum》 EI CSCD 2023年第4期579-591,共13页
The paper is devoted to the two-phase flow simulation.The gas-condensate mixture flow in a horizontal pipe under high pressure is considered.The influence of the equation of state(EOS)choice for mixture properties mod... The paper is devoted to the two-phase flow simulation.The gas-condensate mixture flow in a horizontal pipe under high pressure is considered.The influence of the equation of state(EOS)choice for mixture properties modelling on the flow regime calculation results is studied for gas with high content of methane homologues.An analytical overview of the methods to predict the flow pattern is provided.Based on this analysis,two techniques are selected.For these techniques,values of density and viscosity for each phase are required.Density calculation for the gas phase is performed with Van der Waals based EOS.The propriate EOS is selected based on studies of calculation errors for test mixtures.Calculation of liquid phase density is done by means of Patela-Teja and Guo-Du equations,two different models are considered for viscosity estimation.The flow patterns of gas-condensate mixture in a range of temperatures and pressures are calculated and verified via probability map.The results of study allow to recommend the Brusilovsky EOS for calculation of densities for similar gas mixtures and make more rigorous flow regime evaluation.The probability map shows that for the chosen composition and parameters of media the flow pattern is mostly transitional between segregated and annular independent from EOS. 展开更多
关键词 Two-phase flow Flow pattern Natural gas wet gas High content of C_(2+) High pressure
原文传递
Investigation on the relationship between the fine particle emission and crystallization characteristics of gypsum during wet flue gas desulfurization process 被引量:9
6
作者 Danping Pan Hao Wu Linjun Yang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2017年第5期303-310,共8页
The relationship between the fine particles emitted after desulfurization and gypsum crystals in the desulfurization slurry was investigated,and the crystallization characteristics varying with the operation parameter... The relationship between the fine particles emitted after desulfurization and gypsum crystals in the desulfurization slurry was investigated,and the crystallization characteristics varying with the operation parameters and compositions of the desulfurization slurry were discussed.The results showed that the fine particles generated during the desulfurization process were closely related to the crystal characteristics in the desulfurization slurry by comparison of their morphology and elements. With the higher proportion of fine crystals in the desulfurization slurry,the number concentration of fine particles after desulfurization was increased and their particle sizes were smaller,indicating that the optimization of gypsum crystallization was beneficial for the reduction of the fine particle emission. The lower p H value and an optimal temperature of the desulfurization slurry were beneficial to restrain the generation of fine crystals in the desulfurization slurry. In addition,the higher concentrations of the Fe3+ions and the F- ions in the desulfurization slurry both promoted the generation of fine crystals with corresponding change of the morphology and the effect of the Fe3+ ions was more obvious.With the application of the desulfurization synergist additive,it was beneficial for the inhibition of fine crystals while the thinner crystals were generated. 展开更多
关键词 wet flue gas desulfurization Fine particle Gypsum crystallization Emission
原文传递
Model Free Adaptive Predictive Control of Desulfurization Slurry pH Based on CPS Framework
7
作者 Jian Liu Xiaoli Li +2 位作者 Kang Wang Fuqiang Wang Guimei Cui 《Journal of Beijing Institute of Technology》 EI CAS 2020年第4期544-555,共12页
In order to improve the slurry pH control accuracy of the absorption tower in the wet flue gas desulfurization process,a model free adaptive predictive control algorithm for the desulfurization slurry pH which is base... In order to improve the slurry pH control accuracy of the absorption tower in the wet flue gas desulfurization process,a model free adaptive predictive control algorithm for the desulfurization slurry pH which is based on a cyber physical systems framework is proposed.First,aiming to address system characteristics of non-linearity and pure hysteresis in slurry pH change process,a model free adaptive predictive control algorithm based on compact form dynamic linearization is proposed by combining model free adaptive control algorithm with model predictive control algorithm.Then,by integrating information resources with the physical resources in the absorption tower slurry pH control process,an absorption tower slurry pH optimization control system based on cyber physical systems is constructed.It is turned out that the model free adaptive predictive control algorithm under the framework of the cyber physical systems can effectively realize the high-precision tracking control of the slurry pH of the absorption tower,and it has strong robustness. 展开更多
关键词 wet flue gas desulfurization slurry pH cyber physical systems model free adaptive predictive control tracking control
下载PDF
Field Studies on the Removal Characteristics of Particulate Matter and SO_(x) in Ultra-Low Emission Coal-Fired Power Plant
8
作者 Xu Zhao Houzhang Tan +1 位作者 Fuxin Yang Shuanghui Deng 《Energy Engineering》 EI 2022年第1期49-62,共14页
In order to reduce the environmental smog caused by coal combustion,air pollution control devices have been widely used in coal-fired power plants,especially of wet flue gas desulfurization(WFGD)and wet electrostatic ... In order to reduce the environmental smog caused by coal combustion,air pollution control devices have been widely used in coal-fired power plants,especially of wet flue gas desulfurization(WFGD)and wet electrostatic precipitator(WESP).In this work,particulate matter with aerodynamic diameter less than 10μm(PM_(10))and sulfur oxides(SO_(x))have been studied in a coal-fired power plant.The plant is equipped with selective catalytic reduction,electrostatic precipitator,WFGD,WESP.The results show that the PM_(10)removal efficiencies in WFGD and WESP are 54.34%and 50.39%,respectively,and the overall removal efficiency is 77.35%.WFGD and WESP have effects on the particle size distribution.After WFGD,the peak of particles shifts from 1.62 to 0.95μm,and the mass concentration of fine particles with aerodynamic diameter less than 0.61μm increases.After WESP,the peak of particle size shifts from 0.95 to 1.61μm.The differences are due to the agglomeration and growth of small particles.The SO_(3)mass concentration increases after SCR,but WFGD has a great influence on SO_(x)with the efficiency of 96.56%.WESP can remove SO_(x),but the efficiency is 20.91%.The final emission factors of SO_(2),SO_(3),PM_(1),PM_(2.5)and PM_(10)are 0.1597,0.0450,0.0154,0.0267 and 0.0215(kg·t^(−1)),respectively.Compared with the research results without ultra-low emission retrofit,the emission factors are reduced by 1~2 orders of magnitude,and the emission control level of air pollutants is greatly improved. 展开更多
关键词 Particulate matter sulfur oxides wet flue gas desulfurization wet electrostatic precipitator coal-fired power plant
下载PDF
Distribution and Accumulation of Major and Trace Elements in Gypsum Samples from Lignite Combustion Power Plant
9
作者 Majda Pavlin Radojko Jacimovic +3 位作者 Andrej Stergarsek Peter Frkal Maja Koblar Milena Horvat 《American Journal of Analytical Chemistry》 2018年第12期602-621,共20页
Flue gas containing volatile elements, fine fly ash particulates not retained by particle control devices, and limestone are the most important sources of trace and major elements (TMEs) in wet flue gas desulphurizati... Flue gas containing volatile elements, fine fly ash particulates not retained by particle control devices, and limestone are the most important sources of trace and major elements (TMEs) in wet flue gas desulphurization (WFGD) gypsum. In this study, samples of gypsum slurry were separated into fine and coarse fractions. Multi-elemental analysis of 45 elements in the different size fractions of gypsum, slurry waters and lignite were performed by k0-INAA (k0-instrumental neutron activation analyses). The study found that the volatile elements (Hg, Se and halogens) in the flue gas accumulate in the fine fractions of gypsum. Moreover, the concentrations of most TMEs are considerably higher in the fine fractions compared to the coarse fractions. The exceptions are Ca and Sr that primarily originate from the limestone. Variations of TMEs in the finer fractions are dependent on the presence of CaSO4·2H2O that is the main constituent of the coarse fraction. Consequently, the content of TMEs in the fine fraction is highly dependent on the efficiency of separating the fine fraction from the coarse fraction. Separation of the finer fraction, representing about 10% of the total gypsum, offers the possibility to remove effectively TMEs from WFGD slurry. 展开更多
关键词 Trace and Major Elements wet Flue gas Desulphurization Gypsum Particle Size Fractions Mercury and Selenium Sample Preparation
下载PDF
Characterization of a new total heat recovery system using CaCl_(2) as working fluid:Thermal modeling and physical analysis 被引量:1
10
作者 Chenghu Zhang Yibo Zhao +1 位作者 Xiaomeng Shi Xinpeng Huang 《Energy and Built Environment》 2022年第2期158-170,共13页
This paper introduces a kind of open cycle absorption heat wet flue gas heat recovery system,which use CaCl_(2) as the working medium.The system will use the wet heat recovery method and combined with an efficient hea... This paper introduces a kind of open cycle absorption heat wet flue gas heat recovery system,which use CaCl_(2) as the working medium.The system will use the wet heat recovery method and combined with an efficient heat pump system for flue gas as a heat source generator.Through direct contact with the solution in the absorber,the flue gas is going to carry out gas,liquid heat transfer between heat exchanger,realization of sensible heat and latent heat step by step.As the key part of the system,absorber is established by one-dimensional steady-state heat transfer and mass transfer model.This paper uses the finite difference method to model the discrete numerical methods,and an-alyzes the characteristics of heat and mass transfer in the absorber.We obtain the concentration curves of the three kinds of working medium’s temperature and flow along the height direction.We also analyze the influence of CaCl_(2) solution parameters changes on the absorption process,parsing the reason of the temperature change by analyzing the three working medium’s energy flow trend.We found that the temperature change of flue gas is non-monotonic,which decreases gradually in the range of absorption tower height 0-0.9 m,and then increases gradually.The reason for this change is that sensible heat exchange and latent heat exchange exist between flue gas and solution.Although such a change has an impact on the efficiency of the system,it prevents the"white smoke"from condensing in the air,which effectively protects the environment.Compared with conventional LiBr absorption heat pump,the system constructed in this paper has certain advantages in latent heat recovery,flue gas heat energy utilization,energy conservation and emission reduction and economy. 展开更多
关键词 Hot and wet waste gas Waste heat recovery Heat and mass transfer System features
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部