A precise friction model is essential for the prediction of tyre wet grip performance and optimization of pavement surface texture design.A mechanical system for predicting the wet grip potential of asphalt pavement w...A precise friction model is essential for the prediction of tyre wet grip performance and optimization of pavement surface texture design.A mechanical system for predicting the wet grip potential of asphalt pavement was systematically presented using an extended rubber material model by a time step integration scheme.This analytical approach was transferred to a 2D numerical multi-body system consisting of interconnected masses,coupling spring and elementary rubber element of a generalized Maxwell model of rubber tyre tread.The system consists of two basic modules with the same program structure and algorithm,considering the frequency-,temperature-,and strain-dependency behaviors of the complex dynamic modulus of rubber element.The dependence of penetration depth and friction coefficient on the velocity was simulated and validated.It can be concluded that this system can be used for predicting the wet grip potential of asphalt pavements.展开更多
The wet grip of tire has always been the focus because it is related to the personal safety of passengers directly.Many methods were employed to improve the wet grip of tire.Researchers paid more attention on bionics ...The wet grip of tire has always been the focus because it is related to the personal safety of passengers directly.Many methods were employed to improve the wet grip of tire.Researchers paid more attention on bionics method recent years.In nature,tree frogs have high adhesion ability in wet environment,which is mainly due to their footpads having fine polygon grooves(mainly hexagon grooves).To improve the performance of wet grip of tire,from the perspective of bionics,inspired by the footpad of tree frog,the bionic hexagon tread pattern was designed.The friction test was carried out to compare with the common tread patterns such as serrated,striped and square patterns.The results showed that the bionic hexagon tread pattern generally had high friction coefficient and directional stability of friction.The main reason was that the hexagon tread block was less affected by the friction-induced torque and the groove of bionic hexagon tread pattern had better drainage characteristic.The bionic hexagon tread pattern provides new idea and method for the design of tires with high wet grip.展开更多
基金Project(FP6-PL-0506437) supported by European CommissionProject(50908053) supported by the National Natural Science Foundation of China
文摘A precise friction model is essential for the prediction of tyre wet grip performance and optimization of pavement surface texture design.A mechanical system for predicting the wet grip potential of asphalt pavement was systematically presented using an extended rubber material model by a time step integration scheme.This analytical approach was transferred to a 2D numerical multi-body system consisting of interconnected masses,coupling spring and elementary rubber element of a generalized Maxwell model of rubber tyre tread.The system consists of two basic modules with the same program structure and algorithm,considering the frequency-,temperature-,and strain-dependency behaviors of the complex dynamic modulus of rubber element.The dependence of penetration depth and friction coefficient on the velocity was simulated and validated.It can be concluded that this system can be used for predicting the wet grip potential of asphalt pavements.
基金supported by the National Key R&D Plan(2016YFD0701102)the Graduate Innovation Fund of Jilin University(101832020CX166)+3 种基金the Science-Technology Development Plan Project of Jilin Province(20200403038SF,20200501013GX,20200403006SF)the"13th Five-Year Plan"Scientific Research Foundation of the Education Department of Jilin Province(JJKH20201000KJ,JJKH20211120KJ)the Talent Development Foundation of Jilin Province(2020015)the Fundamental Research Foundation for the Central Universities.
文摘The wet grip of tire has always been the focus because it is related to the personal safety of passengers directly.Many methods were employed to improve the wet grip of tire.Researchers paid more attention on bionics method recent years.In nature,tree frogs have high adhesion ability in wet environment,which is mainly due to their footpads having fine polygon grooves(mainly hexagon grooves).To improve the performance of wet grip of tire,from the perspective of bionics,inspired by the footpad of tree frog,the bionic hexagon tread pattern was designed.The friction test was carried out to compare with the common tread patterns such as serrated,striped and square patterns.The results showed that the bionic hexagon tread pattern generally had high friction coefficient and directional stability of friction.The main reason was that the hexagon tread block was less affected by the friction-induced torque and the groove of bionic hexagon tread pattern had better drainage characteristic.The bionic hexagon tread pattern provides new idea and method for the design of tires with high wet grip.