期刊文献+
共找到2,732篇文章
< 1 2 137 >
每页显示 20 50 100
Review of collapse triggering mechanism of collapsible soils due towetting 被引量:26
1
作者 Ping Li Sai Vanapalli Tonglu Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2016年第2期256-274,共19页
Loess soil deposits are widely distributed in arid and semi-arid regions and constitute about 10% of land area of the world.These soils typically have a loose honeycomb-type meta-stable structure that is susceptible t... Loess soil deposits are widely distributed in arid and semi-arid regions and constitute about 10% of land area of the world.These soils typically have a loose honeycomb-type meta-stable structure that is susceptible to a large reduction in total volume or collapse upon wetting.Collapse characteristics contribute to various problems to infrastructures that are constructed on loess soils.For this reason,collapse triggering mechanism for loess soils has been of significant interest for researchers and practitioners all over the world.This paper aims at providing a state-of-the-art review on collapse mechanism with special reference to loess soil deposits.The collapse mechanism studies are summarized under three different categories,i.e.traditional approaches,microstructure approach,and soil mechanics-based approaches.The traditional and microstructure approaches for interpreting the collapse behavior are comprehensively summarized and critically reviewed based on the experimental results from the literature.The soil mechanics-based approaches proposed based on the experimental results of both compacted soils and natural loess soils are reviewed highlighting their strengths and limitations for estimating the collapse behavior.Simpler soil mechanics-based approaches with less parameters or parameters that are easy-to-determine from conventional tests are suggested for future research to better understand the collapse behavior of natural loess soils.Such studies would be more valuable for use in conventional geotechnical engineering practice applications. 展开更多
关键词 collapse mechanism Microstructure Constitutive relationships Compacted soils Natural loess soils Elastoplastic models Yield surface Structural strength
下载PDF
Numerical study on settlement of high-fill airports in collapsible loess geomaterials:A case study of Lüliang Airport in Shanxi Province,China 被引量:9
2
作者 JIE Yu-xin WEI Ying-jie +1 位作者 WANG Du-li WEI Yi-feng 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第3期939-953,共15页
Foundation settlement is of great significance for high-fill engineering in collapsible loess areas.To predict the construction settlement of Lüliang Airport located in Shanxi Province,China,a plane strain finite... Foundation settlement is of great significance for high-fill engineering in collapsible loess areas.To predict the construction settlement of Lüliang Airport located in Shanxi Province,China,a plane strain finite element method considering the linear variation in the modulus,was carried out in this paper based on the results of geotechnical tests.The stress and deformation of four typical sections caused by layered fill are simulated,and then the settlement of the high-fill airport is calculated and analyzed by inputting three sets of parameters.The relative soft parameters of loess geomaterials produce more settlement than the relatively hard parameters.The thicker the filling body is,the greater the settlement is.The filling body constrained by mountains on both sides produces less settlement than the filling body constrained by a mountain on only one side even the filling thickness is almost the same.The settlement caused by the original subbase accounts for 56%−77%of the total settlement,while the fill soils themselves accounts for 23%−44%of the total settlement,which is approximately consistent with the field monitoring results.It provides a good reference for predicting the settlement of similar high-fill engineering. 展开更多
关键词 high-fill airport collapsible loess settlement deformation numerical calculation
下载PDF
Static load test and load transfer mechanism study of squeezed branch and plate pile in collapsible loess foundation 被引量:8
3
作者 GAO Xiao-juan WANG Jin-chang ZHU Xiang-rong 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2007年第7期1110-1117,共8页
As a special geological phenomenon, the character of collapsible loess foundation is collapsible when penetrated by water. This character leads to the soil losing load bearing capacity largely and may lead to foundati... As a special geological phenomenon, the character of collapsible loess foundation is collapsible when penetrated by water. This character leads to the soil losing load bearing capacity largely and may lead to foundation failure. Pile is a popular foundation used in collapsible loess. The squeezed branch and plate pile is a new type of pile developed in recent years and has not be used in a project before. In this paper three squeezed branch and plate piles are tested in collapsible loess after immersion processing. The results may be used for reference in similar construction project, and to provide theoretical references for de- signing of the squeezed branch and plate piles in engineering practice. 展开更多
关键词 collapsible loess foundation Squeezed branch and plate pile Immersion processing Full-scale static load test
下载PDF
Experimental study on improving collapsible loess with cement 被引量:2
4
作者 SHAN Bo WANG Changming +3 位作者 DONG Quanyang TANG Ling ZHANG Guangyi WEI Jiaming 《Global Geology》 2010年第2期79-84,共6页
The collapsibility of loess ground can directly affect stability of subgrade. Therefore, how to adopt practical technical measures to reduce or eliminate its collapse deformation is an important content in foundation ... The collapsibility of loess ground can directly affect stability of subgrade. Therefore, how to adopt practical technical measures to reduce or eliminate its collapse deformation is an important content in foundation design in collapsible loess zone. Selecting collapsible loess from Fuxin-Chaoyang highway in Liaoning, the authors conducted a series of tests for improving loess with cement. The loess in different water content was mixed with the cement in varying proportions, unconfined compression strength for the samples at four different curing periods were tested, and the relationships of improved soil strength among cement mixture ratio and curing periods were analyzed. When the curing periods are certain, the strength of loess increases along with the mixture ratio increases; when the cement mixture ratio is 5%-15%, the scope of increases is quite obvious; when the mixture ratio is greater than 15%, the tendency of intensity increases turns slow. When the mixture ratio for the specimen is certain, the intensity of the test specimen increases along with the curing period increases, the intensity grows obviously in 28 days, and the growth rate is small in 28-90 days, the intensity tends to be steady in the curing period of 90 days. 展开更多
关键词 collapsible loess CEMENT unconfined compression strength
下载PDF
Experiment Study of Dynamic Compaction Applied in Collapsible Loess
5
作者 Mei Wang Hongbai Xiao 《Journal of Civil Engineering and Architecture》 2010年第1期67-70,共4页
The collapsibility of loess, which can be effectively eliminated by the dynamic compaction, does great harm to the safety of constructions. The effect of the dynamic compaction is evaluated through the contrast and an... The collapsibility of loess, which can be effectively eliminated by the dynamic compaction, does great harm to the safety of constructions. The effect of the dynamic compaction is evaluated through the contrast and analysis of the physical and mechanical properties of the collapsible loess before and after dynamic compacting. The compacting effect can be divided into three phases along the depth, and the most effective improved depth is from 3 to 8 m. 展开更多
关键词 collapsible loess construction safety dynamic compaction.
下载PDF
The Research on Treating Collapsible Loess by Down Whole Deep Compaction and Cement Fly-ash Gravel
6
作者 Tao Xue Shang Gao 《Frontiers Research of Architecture and Engineering》 2019年第1期8-11,共4页
The treatment of loess foundation is always difficult.The analysis of its advantages and mechanism of treating loess foundation by CFG,on the base of project geology,through construction example,we suggest the compoun... The treatment of loess foundation is always difficult.The analysis of its advantages and mechanism of treating loess foundation by CFG,on the base of project geology,through construction example,we suggest the compound plan by both DDC and CFG.The tests illustrates that the down hole deep compaction and cement-fly ash-gravel are effective foundation treatment method to eliminate the collapsibility of loess,increase the bearing capacity and improve the behavior of composite foundations. 展开更多
关键词 DOWN hole DEEP COMPACTION CEMENT fly ash-gravel collapsible loess Bearing capacity
下载PDF
Constructing Large Capacity Power Plant on Collapsible Loess Stratum with Huge Thickness
7
作者 Huang Tianshi, Liu Houjian Northwest Electric Power Design Institute (NWEPDI) 《Electricity》 1996年第4期39-41,共3页
1 Preface In the northern and northwestern parts of China, quite a large portion of area, approximately 630,000 km^2, is covered by loess and loess-liked soils. The loess thickness ranges from several meters to severa... 1 Preface In the northern and northwestern parts of China, quite a large portion of area, approximately 630,000 km^2, is covered by loess and loess-liked soils. The loess thickness ranges from several meters to several hundred meters along the river’s terraces to those geomorphologic plateaus. In geology, "China Loess" has become a geologic term, because the loess in China has evolved with the widest distribution and greatest thickness in the world, and is also a typical and significant deposit in Quaternary Period. 展开更多
关键词 THAN MORE In TEST Constructing Large Capacity Power Plant on collapsible loess Stratum with Huge Thickness
下载PDF
Influence of Collapsible Loess on Foundation and its Treatment Strategy
8
作者 Miao Dai 《Journal of World Architecture》 2021年第4期34-37,共4页
The properties of collapsible loess are complex.The self-gravity of overlying soil,sei gravity stress and additional stress act together,which will damage the soil structure and lead to the deformation of the soil str... The properties of collapsible loess are complex.The self-gravity of overlying soil,sei gravity stress and additional stress act together,which will damage the soil structure and lead to the deformation of the soil structure.Collapsible loess is widely distributed in Northwest and Northeast China.A series of problems caused by its structural characteristics will affect the quality of foundation construction.Therefore,construction enterprises need to deeply study the foundation treatment measures of collapsible loess,so as to avoid the uneven settlement after the construction of collapsible yellow soil foundation.This paper analyzes from the judgment and classification of collapsible loess,studies the impact of collapsible loess on building fbxmdation construction,and explores the specific construction treatment measures of collapsible loess,in order to promote the effective application of foundation construction. 展开更多
关键词 collapsible loess Foundation construction Processing strategy Constructional engineering
下载PDF
Collapse behavior and microstructural evolution of loess soils from the Loess Plateau of China 被引量:19
9
作者 XIE Wan-li LI Ping +2 位作者 ZHANG Mao-sheng CHENG Tian-e WANG Yong 《Journal of Mountain Science》 SCIE CSCD 2018年第8期1642-1657,共16页
Loess soils are characterized by metastable microstructure, high porosity and water-sensitivity. These soils have always been problematic soils and attracted attention from researchers all over the world. In the prese... Loess soils are characterized by metastable microstructure, high porosity and water-sensitivity. These soils have always been problematic soils and attracted attention from researchers all over the world. In the present study, three loess soils extracted at various depths from the Loess Plateau of China, i.e. Malan(Q_3), upper Lishi(Q_2~2) and lower Lishi(Q_2~1) loess soils, were studied. Single oedometer-collapse tests were performed on intact loess specimens to investigate the collapse behavior of three loess soils. The microstructure and chemical composition of each loess before and after collapse test were characterized using scanning electron microscopy(i.e. SEM) and energy dispersive spectroscopy(i.e. EDS) techniques. The microstructural evolution due to wetting collapse was interpreted qualitatively and quantitatively in terms of the pore morphology properties. The results suggest that:(1) the collapse potential of each loess may rise again after a round of rise and drop, which could be failure of the new-developed stable structure under quite high vertical pressure. It implies that loess may collapse even if it has collapsed.(2) Q_3, Q_2~2 and Q_2~1 loess have different types of microstructure, namely, granule, aggregate and matrix type of microstructure, respectively.(3) The microstructural evolution due to loading and wetting is observed from a granule type to an aggregate type and finally to a matrix type of structure. The variations in distributions of pore morphology properties indicate that collapse leads to a transformation of large-sized pores into small-sized pores, re-orientation and remolding of soil pores due to particle rearrangement.(4) A porous structure is essential for loess collapse; however, the non-water-stability of bonding agents promotes the occurrence of collapse under the coupling effect of loading and wetting. 展开更多
关键词 loess collapsE MICROSTRUCTURE Scanning electron microscopy Image processing Pore morphology properties
下载PDF
Changes in terrestrial surface dry and wet conditions on the Loess Plateau(China) during the last half century 被引量:15
10
作者 YuBi YAO RunYuan WANG +5 位作者 JinHu YANG Ping YUE DengRong LU Guo,Ju XIAO Yang WANG LinChun LIU 《Journal of Arid Land》 SCIE CSCD 2013年第1期15-24,共10页
This paper, using a revised Penman-Monteith model, computed the terrestrial surface humidity index of the Loess Plateau (China) based on climatic factors of monthly mean temperature, maximum temperature, minimum tem... This paper, using a revised Penman-Monteith model, computed the terrestrial surface humidity index of the Loess Plateau (China) based on climatic factors of monthly mean temperature, maximum temperature, minimum temperature, relative humidity, precipitation, wind speed and sunshine duration observed on the plateau from 1961 to 2008. The temporal-spatial distribution, anomaly distribution and sub-regional temporal variations of the terrestrial surface dry and wet conditions were analyzed as well. The results showed a decreasing trend in the annual average surface humidity from the southeast to the northwest in the research anna. Over the period of 1961-2008, an aridification tendency appeared sharply in the central interior region of the Loess Plateau, and less sharply in the middle part of the region. The border region showed the weakest tendency ol; aridification. It is clear that aridification diffused in all directions from the interior region. The spatial anomaly distribution of the terrestrial surface dry and wet conditions on the Loess Plateau can be divided into three key areas: the southern, western and eastern regions. The terrestrial annual humidity index displayed a significantly descending trend and showed remarkable abrupt changes from wet to dry in the years 1967, 1977 and 1979. In the above mentioned three key areas for dry and wet conditions, the terrestrial annual humidity index exhibited a fluctuation period of 3-4 years, while in the southern region, a fluctuation period of 7-8 years existed at the same time. 展开更多
关键词 dry and wet conditions spatial distribution temporal variation Penman-Monteith model loess Plateau
下载PDF
Feasibility of using electrokinetics and nanomaterials to stabilize and improve collapsible soils 被引量:3
11
作者 Arash Hosseini S.Mohsen Haeri +1 位作者 Siavash Mahvelati Aria Fathi 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2019年第5期1055-1065,共11页
Loess as a subcategory of collapsible soils is a well-known aeolian deposit generally characterized as a highly-porous medium with relatively low natural density and water content and a high percentage of fine-grained... Loess as a subcategory of collapsible soils is a well-known aeolian deposit generally characterized as a highly-porous medium with relatively low natural density and water content and a high percentage of fine-grained particles.Such collapsible soil sustains large stresses under a dry condition with natural water content.However,it can experience high and relatively sudden decreases in its volume once it reaches a certain water content under a certain load and therefore,the natural condition of the soil might not be suitable for construction if the possibility of the exposure of the soil to excessive water exists during the lifetime of the project.This research presents the utilization of an innovative method for stabilization and improvement of Gorgan loessial soil.This method uses electrokinetics and nanomaterials to instigate additives to move through soil pores,as an in situ remedial measure.To assess the acceptability of this measure,the deformability and strength characteristics of the improved collapsible soil are measured and compared with those of the unimproved soil,implementing several unsaturated oedometer tests under constant vertical stress and varying matric suction.The result emphasizes the importance of the matric suction on the behavior of both improved and unimproved soils.The test results indicate that the resistance of the soil was highly dependent on the water content and matric suction of the soil.The oedometer tests on samples improved by 3%lime and 5%nanomaterials show considerable improvement of the collapse potential.Results also reveal that stabilized samples experience notably lower volume decrease under the same applied stresses. 展开更多
关键词 loess Electrokinetics collapsible SOIL SOIL improvement UNSATURATED oedometer NANOSILICA
下载PDF
Processes and mechanisms of multi-collapse of loess roads in seasonally frozen ground regions: A review 被引量:3
12
作者 GuoYu Li Wei Ma +4 位作者 Fei Wang YanHu Mu YunCheng Mao Xin Hou Hui Bing 《Research in Cold and Arid Regions》 CSCD 2015年第4期456-468,共13页
Usually, the collapsible loess widely distributed across the world can serve as a type of foundation soil that meets its strength requirement after dense compaction and elimination of collapsibility. However, many pro... Usually, the collapsible loess widely distributed across the world can serve as a type of foundation soil that meets its strength requirement after dense compaction and elimination of collapsibility. However, many problems such as cracks and differential settlement still occur in loess roads in the seasonally frozen ground regions after several years of op- eration. Many studies have demonstrated that these secondary or multiple collapses primarily result from the repeated freezing-thawing, wetting-drying, and salinization-desalinization cycles. Therefore, we conducted a research program to (1) monitor the in-situ ground temperatures and water content in certain loess roads to understand their changes, (2) study the effects of freezing-thawing, wetting-drying, and salinization-desalinization cycles on geotechnical properties and micro-fabrics of compacted loess in the laboratory, and (3) develop mitigative measures and examine their engineered effectiveness, i.e., their thermal insulating and water-proofing effects in field and laboratory tests. Our results and advances are reviewed and some further research needs are proposed. These findings more clearly explain the processes and mechanisms of secondary and multiple collapse of loess roads. We also offer references for further study of the weakening mechanisms of similar structural soils. 展开更多
关键词 mechanics of loess loess roads secondary or multiple collapse FREEZING-THAWING wetting-drying saliniza-tion-desalinization
下载PDF
Microstructure evolution of loess under multiple collapsibility based on nuclear magnetic resonance and scanning electron microscopy 被引量:4
13
作者 WANG Hai-man NI Wan-kui +3 位作者 YUAN Kang-ze LI Lan NIE Yong-peng GUO Ye-xia 《Journal of Mountain Science》 SCIE CSCD 2021年第10期2612-2625,共14页
In recent years, the acceleration of urbanization in loess areas has prompted frequent dismantling and reconstruction of old urban areas. Demolition and reconstruction of buildings involve multiple collapses of the fo... In recent years, the acceleration of urbanization in loess areas has prompted frequent dismantling and reconstruction of old urban areas. Demolition and reconstruction of buildings involve multiple collapses of the foundation. To study microstructure evolution of loess under multiple collapsibility, this paper selects undisturbed loess samples from Guyuan, Northwest China for multiple compression tests. Using nuclear magnetic resonance(NMR) imaging and scanning electron microscopy(SEM) as auxiliary methods, a combination of qualitative and quantitative analyses was used to study the microstructure of loess samples before and after various number of collapses under different pressures. Results show that the loess does undergo multiple collapse under 200 kPa pressure. Pore is an important reason for loess collapse. The initial collapse comes primarily from the compression of macropores and mesopores, and the second collapse comes primarily from mesopore compression. The compression process of loess can be roughly divided into two stages. First, under the action of dissolution and compression, the relative displacement of soil particles occurs. Macropores and mesopores are destroyed first, generating small pores. Second, with increasing pressure and times of collapses, pore compression gradually transforms into small pore compression. During the first collapse, particle aggregates disintegrate due to water and pressure. However, with increasing times of collapses, the contact relationship between particles gradually changes from the point contact to face contact. Loess particles tend to gradually become rounded. The study of the microstructure provides the possibility to further reveal the mechanism of multiple collapsibility of loess. 展开更多
关键词 loess Multiple collapse MICROSTRUCTURE Nuclear magnetic resonance Pore volume
下载PDF
Evaluation and Analysis of the Effect of Lignin Amelioration on Loess Collapsibility 被引量:3
14
作者 Xiumei Zhong Yuxin Liang +4 位作者 Qian Wang Jinlian Ma Shouyun Liang Yan Wang Xiaowei Xu 《Journal of Renewable Materials》 SCIE EI 2022年第12期3405-3424,共20页
The road subgrade and road surface in collapsible loess area are prone to many engineering diseases such as uneven subgrade settlement,insufficient bearing capacity of soaked foundation,collapse and instability of sub... The road subgrade and road surface in collapsible loess area are prone to many engineering diseases such as uneven subgrade settlement,insufficient bearing capacity of soaked foundation,collapse and instability of sub-grade side slope due to the special properties of loess.As an environment-friendly,low-cost soil modifier with good adhesion and chelation properties,lignin has been considered to be used in highway subgrade construction.In order to explore the effect of lignin on loess,the compressive and collapsible properties of modified loess with different lignin contents were analyzed based on consolidation compression test.The improvement mechanism of lignin on loess collapsibility was studied by means of infiltration test and SEM test.The results show that lignin fibers can promote the agglomeration of loose particles and form a network structure in the soil particle pores,enhance the cementation strength between particles and soil skeleton,and reduce the permeability of loess.With the increase of lignin fiber content,the improvement degree of loess collaps ility shows a trend of first increasing and then decreasing.When the lignin fiber content is 2%,the effect is the best,and the improved loess ollapsi-bility is eliminated. 展开更多
关键词 collapsible loess LIGNIN distribution characteristics of pore particles SEM permeability characteristics
下载PDF
Multiscale characteristics of the wetting deformation of Malan loess in the Yan’an area,China 被引量:1
15
作者 NAN Jing-jing PENG Jian-bing +2 位作者 ZHU Feng-ji ZHAO Jun-yan LENG Yan-qiu 《Journal of Mountain Science》 SCIE CSCD 2021年第4期1112-1130,共19页
Loess is prone to collapse upon wetting due to its open metastable structure,which poses a considerable threat to the environment,construction processes and human life.In this study,double oedometer tests and scanning... Loess is prone to collapse upon wetting due to its open metastable structure,which poses a considerable threat to the environment,construction processes and human life.In this study,double oedometer tests and scanning electron microscopy and mercury intrusion porosimetry analyses were conducted on loess from Yan’an to study the macroscopic and microscopic characteristics of loess wetting deformation and the underlying mechanism.The wetting collapse of loess under loading depends on the changes in different microstructure levels and elements.This collapse chain reaction is manifested by the dissipation,scattering and recombination of the cementation,deformation and reorganization of the particles,blocking of the pore channels,decrease in the dominant size and volume of unstable macropores(>14μm)and abundant mesopores(2.5-14μm),increase in the volume of small pores(0.05–2.5μm),and volume contraction at the macroscale.This process is dependent on the initial water content,stress level and wetting degree.These findings can facilitate collapsible loess hazard prevention and geological engineering construction. 展开更多
关键词 loess Macroscopic wetting deformation wetting collapse mechanism MICROSTRUCTURE Pore change
下载PDF
Spatial variability of leaf wetness under different soil water conditions in rainfed jujube (Ziziphus jujuba Mill.) in the loess hilly region, China 被引量:1
16
作者 GAO Zhiyong WANG Xing 《Journal of Arid Land》 SCIE CSCD 2022年第1期70-81,共12页
Leaf wetness provides a wide range of benefits not only to leaves,but also to ecosystems and communities.It regulates canopy eco-hydrological processes and drives spatial differences in hydrological flux.In spite of t... Leaf wetness provides a wide range of benefits not only to leaves,but also to ecosystems and communities.It regulates canopy eco-hydrological processes and drives spatial differences in hydrological flux.In spite of these functions,little remains known about the spatial distribution of leaf wetness under different soil water conditions.Leaf wetness measurements at the top(180 cm),middle(135 cm),and bottom(85 cm)of the canopy positions of rainfed jujube(Ziziphus jujuba Mill.)in the Chinese loess hilly region were obtained along with meteorological and soil water conditions during the growing seasons in 2019 and 2020.Under soil water non-deficit condition,the frequency of occurrence of leaf wetness was 5.45%higher at the top than at the middle and bottom of the canopy positions.The frequency of occurrence of leaf wetness at the top,middle and bottom of the canopy positions was over 80%at 17:00‒18:00(LST).However,the occurrence of leaf wetness at the top was earlier than those at the middle and bottom of the canopy positions.Correspondingly,leaf drying at the top was also latter than those at the middle and bottom of the canopy positions.Leaf wetness duration at the middle was similar to that at the bottom of the canopy position,but about 1.46-3.01 h less than that at the top.Under soil water deficit condition,the frequency of occurrence of leaf wetness(4.92%-45.45%)followed the order of top>middle>bottom of the canopy position.As the onset of leaf wetness was delayed,the onset of wet leaf drying was advanced and the leaf wetness duration was shortened.Leaf wetness duration at the top was linearly related(R^(2)>0.70)to those at the middle and bottom of the canopy positions under different soil water conditions.In conclusion,the hydrological processes at canopy surfaces of rainfed jujube depended on the position of leaves,thus adjusting canopy structure to redistribute hydrological process is a way to meet the water need of jujube. 展开更多
关键词 canopy position leaf wetness rainfed jujube soil water condition loess hilly region
下载PDF
Argentinean Collapsibility Loess. Characterization and Evaluation on the Constrained Modulus 被引量:2
17
作者 Ricardo Schiava Gonzalo Zarazaga 《Journal of Geological Resource and Engineering》 2016年第7期345-351,共7页
Loessic soil in the north-west of Argentina, which consists of silt and silty clay with reduced content of fine sand, has collapsible characteristics. This means that by increasing the moisture content close to the li... Loessic soil in the north-west of Argentina, which consists of silt and silty clay with reduced content of fine sand, has collapsible characteristics. This means that by increasing the moisture content close to the liquid limit value, the loess soil's macro porous structure breaks experiencing large volumetric deformations. The collapse pressure and soil constrained modulus are fundamentals parameters for the characterization of these soils and the study of solutions to geotechnical problems. In this work we study the loess from the north-west region of our country, especially the Santiago del Estero's plain, based on numerous field tests and laboratory tests in order to correlate the modulus and collapse pressure from double-odometer test with the blow count from SPT (standard penetration test). It also analyzes the influence of these parameters on moisture content, void ratio and the presence of salts and calcareous concretions in soils and discusses the validity of these correlations as well as those proposed by other authors. 展开更多
关键词 loess collapsIBILITY constrained modulus.
下载PDF
Water infiltration and soil-water characteristics of compacted loess under applied vertical stress
18
作者 ZHANG Lin LI Tong-lu +2 位作者 LI Ji-heng LIANG Wei CHEN Cun-li 《Journal of Mountain Science》 SCIE CSCD 2023年第3期873-885,共13页
Additional stress formed by postconstruction buildings in loess-filling areas affects water infiltration in soil and causes soil deformation.To investigate this effect,under constant water head,vertical infiltration t... Additional stress formed by postconstruction buildings in loess-filling areas affects water infiltration in soil and causes soil deformation.To investigate this effect,under constant water head,vertical infiltration tests on compacted loess with two initial dry densities for different applied vertical stresses were developed using vertical stresscontrollable one-dimensional soil columns.The timehistory curves of vertical deformation,wetting front depth,cumulative infiltration depth,volumetric water content(VWC)and suction were measured,and the soil-water characteristic curves(SWCCs)were determined.The results showed that:(1)the infiltration ability of the soil column weakens with increasing applied vertical stress and initial dry density;(2)vertical deformation increases rapidly at first and then tends to be stable slowly at the consolidation and wetting-induced deformation stage,and is positively correlated with applied vertical stress and is negatively correlated with initial dry density.The stability time of wetting-induced deformation and the corresponding wetting front depth increase with the increase of applied vertical stress,while they decrease obviously when initial dry density increases;(3)the influence of applied vertical stress on soilwater characteristics in soil columns with various initial dry densities is related to the deformation depth of soil column.The VG(Van Genuchten)model is suitable for fitting the SWCCs at different monitoring positions.A normalized SWCC model introducing the applied vertical stress was proposed for each initial dry density using the mathematical relationship between the fitting parameters and the applied vertical stress. 展开更多
关键词 Additional stress loess Vertical deformation wetting front Soil column Soil-water characteristic curves
下载PDF
黄土堆填场地转化为泥石流物质过程--以兰州市碱水沟为例 被引量:1
19
作者 刘兴荣 张连科 +2 位作者 董耀刚 宿星 王喜红 《中国水土保持科学》 CSCD 北大核心 2024年第2期73-80,共8页
黄土地区人工堆填场地是近几年兰州市拓展城市用地空间的一个新举措,在场地边缘形成较多堆填边坡,成为参与泥石流的潜在物质。以兰州市碱水沟“4•19”泥石流灾害为例,结合粒径分析试验、扫描电镜图像及野外入渗试验,探讨其特征及运行模... 黄土地区人工堆填场地是近几年兰州市拓展城市用地空间的一个新举措,在场地边缘形成较多堆填边坡,成为参与泥石流的潜在物质。以兰州市碱水沟“4•19”泥石流灾害为例,结合粒径分析试验、扫描电镜图像及野外入渗试验,探讨其特征及运行模式,并提出相应的治理建议。结果表明:1)黄土地区人工堆填体颗粒粒径<1.000 mm的物质约占11.4%~55.2%,有利于泥石流启动;2)以2个相距170 m的泥位调查断面做比较,下游断面流量增加2.5倍,说明入渗引起的黄土湿陷能促进泥石流物质的转化率;3)入渗试验表明:黄土堆填场地渗透性强,低水头条件下8 min左右达到稳定入渗状态,高水头条件下12 min左右达到稳定入渗状态,能在较短的时间内使土壤软化,影响人工堆填场边坡稳定,提高泥石流物质转化速度;4)黄土地区人工堆积体场地诱发的泥石流流动模式复杂、多变,兼具波状流和间歇流的特点。在此基础上,笔者提出过程管理和重点防护相结合的防治模式。 展开更多
关键词 人工堆积场地 碱水沟 黄土湿陷 密实度 波状流和间歇流 防治模式
下载PDF
干湿循环作用下压实黄土裂隙演化特征 被引量:1
20
作者 胡长明 胡婷婷 +4 位作者 朱武卫 袁一力 杨晓 柳明亮 侯旭辉 《长江科学院院报》 CSCD 北大核心 2024年第8期96-103,112,共9页
为了解干湿循环作用下压实黄土裂隙演化规律,通过自制装置开展考虑不同干密度和干湿循环路径的干湿循环裂隙试验,获取土样表面裂隙发育图像。采用PCAS软件对土样裂隙进行定量化分析,获得裂隙形态特征参数,并结合数字图像相关(DIC)法获... 为了解干湿循环作用下压实黄土裂隙演化规律,通过自制装置开展考虑不同干密度和干湿循环路径的干湿循环裂隙试验,获取土样表面裂隙发育图像。采用PCAS软件对土样裂隙进行定量化分析,获得裂隙形态特征参数,并结合数字图像相关(DIC)法获得土样应变场。结果表明:①压实黄土裂隙发育随干湿循环次数的增长可划分为裂隙缓慢发展、快速增长和裂隙缓滞发展3个阶段;②裂隙发育程度受干密度、干湿循环路径共同影响,干密度越大,裂隙越难发育,干湿循环幅度越大、下限含水量越低,裂隙发育越充分;③裂隙中心线部位第一主应变随距起裂点距离的增大呈线性减小趋势,裂隙尖端、裂隙临近区块土体所受挤压作用随远离裂隙程度增大而减弱。研究成果可为压实黄土裂隙演化特征分析提供参考。 展开更多
关键词 压实黄土 干湿循环 裂隙发育 数字图像相关(DIC)技术 应变场
下载PDF
上一页 1 2 137 下一页 到第
使用帮助 返回顶部