This paper presents experimental and theoretical methods to study the damage layer evolution of a breakwater made with concrete hollow squares in marine environment.Wetting time was directly related to the performance...This paper presents experimental and theoretical methods to study the damage layer evolution of a breakwater made with concrete hollow squares in marine environment.Wetting time was directly related to the performance degradation of the breakwater by observation.The thickness of damage layer was detected by means of ultrasonic testing.Meanwhile,some samples drilled from concrete hollow squares were analyzed by SEM and XRD in order to illustrate the damage mechanism.Subsequently,a theoretical model containing wetting time ratio was established to simulate the damage layer evolution based on Fick’s second law,which could be suggested to predict the service life of concrete structures in marine environment.展开更多
基金The authors would like to acknowledge the financial support by the National Natural Science Foundation of China(11832013,11772164)the National Basic Research Program of China(973 Program,2009CB623203)+1 种基金the Key Research Program of Society Development of Ningbo(2013C51007)K.C.Wong Magna Fund in Ningbo University.
文摘This paper presents experimental and theoretical methods to study the damage layer evolution of a breakwater made with concrete hollow squares in marine environment.Wetting time was directly related to the performance degradation of the breakwater by observation.The thickness of damage layer was detected by means of ultrasonic testing.Meanwhile,some samples drilled from concrete hollow squares were analyzed by SEM and XRD in order to illustrate the damage mechanism.Subsequently,a theoretical model containing wetting time ratio was established to simulate the damage layer evolution based on Fick’s second law,which could be suggested to predict the service life of concrete structures in marine environment.