Using angle-resolved photoemission spectroscopy and density functional theory calculations methods,we investigate the electronic structures and topological properties of ternary tellurides NbIrTe_(4),a candidate for t...Using angle-resolved photoemission spectroscopy and density functional theory calculations methods,we investigate the electronic structures and topological properties of ternary tellurides NbIrTe_(4),a candidate for type-II Weyl semimetal.We demonstrate the presence of several Fermi arcs connecting their corresponding Weyl points on both termination surfaces of the topological material.Our analysis reveals the existence of Dirac points,in addition to Weyl points,giving both theoretical and experimental evidences of the coexistence of Dirac and Weyl points in a single material.These findings not only confirm NbIrTe_(4) as a unique topological semimetal but also open avenues for exploring novel electronic devices based on its coexisting Dirac and Weyl fermions.展开更多
One-dimensional(1D)one-way waveguides based on topological edge states of two-dimensional(2D)gyromagnetic photonic crystals have been studied extensively.Here,we theoretically propose a three-dimensional(3D)all-dielec...One-dimensional(1D)one-way waveguides based on topological edge states of two-dimensional(2D)gyromagnetic photonic crystals have been studied extensively.Here,we theoretically propose a three-dimensional(3D)all-dielectric gyromagnetic photonic crystal with type-Ⅱ Weyl points.Based on the inclined band properties of the type-Ⅱ Weyl surface states,we design a 2D one-way interface transmission channel on the Weyl crystal.Light waves in such 2D waveguides can be transmitted robustly over metal obstacles almost without any back-reflection,topologically protected by the type-Ⅱ Weyl points.By manipulating the magnetic field or structural parameters,we also achieve the topological phase transition between Weyl phase and 3D Chern insulator phase and obtain the corresponding phase diagram,which provides more possibilities for topological regulation of the surface states.This work suggests a new way to construct unidirectional 2D waveguides with larger area of energy transmission in 3D space,which is a promising platform for developing 3D topological photonic devices.展开更多
The presence of a pair of Weyl and Dirac points(WP-DP)in topological semimetal states is intriguing and sought after due to the effects associated with chiral topological charges.However,identifying these states in re...The presence of a pair of Weyl and Dirac points(WP-DP)in topological semimetal states is intriguing and sought after due to the effects associated with chiral topological charges.However,identifying these states in real materials poses a significant challenge.In this study,by means of first-principles calculations we predict the coexistence of charge-2 Dirac and charge-2 Weyl phonons at high-symmetry points within a noncentrosymmetric P4_(1)2_(1)2 space group.Furthermore,we propose GeO_(2)as an ideal candidate for realizing these states.Notably,we observe two distinct surface arcs that connect the Dirac and Weyl points across the entire Brillouin zone,which could facilitate their detection in future experimental investigations.This study not only presents a tangible material for experimentalists to explore the topological properties of WP-DP states but also opens up new avenues in the quest for ideal platforms to study chiral particles.展开更多
In three-dimensional noncentrosymmetric materials two-fold screw rotation symmetry forces electron's energy bands to have Weyl points at which two bands touch. This is illustrated for space groups No. 19 (P212121 )...In three-dimensional noncentrosymmetric materials two-fold screw rotation symmetry forces electron's energy bands to have Weyl points at which two bands touch. This is illustrated for space groups No. 19 (P212121 ) and No. 198 (P213), which have three orthogonal screw rotation axes. In the case of space groups No. 61 (Pbca) and No. 205 (Pa-3) that have extra inversion symmetry, Weyl points are promoted to four-fold degenerate line nodes in glide-invariant planes. The three-fold rotation symmetry present in the space groups No. 198 and No. 205 allows Weyl and Dirac points, respectively, to appear along its rotation axes in the Brillouin zone and generates four-fold and six-fold degeneracy at the F point and R point, respectively.展开更多
We construct a three-dimensional topological superconductor Bogoliubov–de Gennes(BdG)Hamiltonian with the normal state being a three-dimensional topological insulator.By introducing inter-orbital spin-triplet pairing...We construct a three-dimensional topological superconductor Bogoliubov–de Gennes(BdG)Hamiltonian with the normal state being a three-dimensional topological insulator.By introducing inter-orbital spin-triplet pairings term△3,there are topological Majorana nodes in the bulk and they are connected by Majorana Fermi arcs on the surface,similar to the case of Weyl semimetal.Furthermore,by adding an inversion-breaking term to the normal state,momentum-independent pairing terms with different parities can coexist in the Bd G Hamiltonian,which creates more Majorana modes similar to Andreev bound states and a richer phase diagram.展开更多
Topological magnetic Weyl semimetals have been proposed to host controllable chiral domain walls which bear a great prospect in device applications. To exploit them in applications, it is important to have a proper wa...Topological magnetic Weyl semimetals have been proposed to host controllable chiral domain walls which bear a great prospect in device applications. To exploit them in applications, it is important to have a proper way to tune and manipulate these domain walls. One possible means is through magnetoelastic coupling. The involvement of rare earth in the lately proposed RAl X(R =rare earth, X = Si and Ge) family magnetic Weyl semimetals may provide such a platform. Here we present the transport and thermodynamic properties of Ce Al Ge under hydrostatic pressure. We find that pressure enhances the antiferromagnetic exchange in Ce Al Ge but essentially retains its magnetic structure. A large topological Hall effect with a pronounced loop shape is observed within the magnetically ordered state, and it splits into two regions under pressure. Such an unusual electromagnetic response is inferred to be a consequence of chiral magnetic domain walls. The unprecedented concomitance of its evolution under pressure and the reentrance of antiferromagnetic order strongly suggest the capability of switching on/off this electromagnetic response in noncentrosymmetric magnetic Weyl semimetals via magnetoelastic coupling.展开更多
The study of topological semimetals hosting spin-1 Weyl points(WPs)beyond Dirac points and WPs has attracted a great deal of attention.However,a spin-1 Weyl semimetal that exclusively possesses spin-1 WPs in a clean f...The study of topological semimetals hosting spin-1 Weyl points(WPs)beyond Dirac points and WPs has attracted a great deal of attention.However,a spin-1 Weyl semimetal that exclusively possesses spin-1 WPs in a clean frequency window without being shadowed by any other nodal points is yet to be discovered.This study reports a spin-1 Weyl semimetal in a phononic crystal.Its spin-1 WPs are touched by two linear dispersions and an additional flat band and carry monopole charges(-2,0,2)or(2,0,-2)for the three bands from the bottom to the top.They result in double Fermi arcs,which occur between the first and second bands,as well as between the second and third bands.Further robust propagation is observed against the multiple joints and topological negative refraction of the acoustic surface arc wave.The results of this study create the basis for the exploration of the unusual properties of spin-1 Weyl physics on a macroscopic scale.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12274455,12274459,and 12204533)the National Key R&D Program of China (Grant No.2022YFA1403800)the Beijing Natural Science Foundation (Grant No.Z200005)。
文摘Using angle-resolved photoemission spectroscopy and density functional theory calculations methods,we investigate the electronic structures and topological properties of ternary tellurides NbIrTe_(4),a candidate for type-II Weyl semimetal.We demonstrate the presence of several Fermi arcs connecting their corresponding Weyl points on both termination surfaces of the topological material.Our analysis reveals the existence of Dirac points,in addition to Weyl points,giving both theoretical and experimental evidences of the coexistence of Dirac and Weyl points in a single material.These findings not only confirm NbIrTe_(4) as a unique topological semimetal but also open avenues for exploring novel electronic devices based on its coexisting Dirac and Weyl fermions.
基金supported by the National Natural Science Foundation of China(Grant No.11974119)Science and Technology Project of Guangdong(Grant No.2020B010190001)+1 种基金Guangdong Innovative and Entrepreneurial Research Team Program(Grant No.2016ZT06C594)National Key R&D Program of China(Grant No.2018YFA0306200)。
文摘One-dimensional(1D)one-way waveguides based on topological edge states of two-dimensional(2D)gyromagnetic photonic crystals have been studied extensively.Here,we theoretically propose a three-dimensional(3D)all-dielectric gyromagnetic photonic crystal with type-Ⅱ Weyl points.Based on the inclined band properties of the type-Ⅱ Weyl surface states,we design a 2D one-way interface transmission channel on the Weyl crystal.Light waves in such 2D waveguides can be transmitted robustly over metal obstacles almost without any back-reflection,topologically protected by the type-Ⅱ Weyl points.By manipulating the magnetic field or structural parameters,we also achieve the topological phase transition between Weyl phase and 3D Chern insulator phase and obtain the corresponding phase diagram,which provides more possibilities for topological regulation of the surface states.This work suggests a new way to construct unidirectional 2D waveguides with larger area of energy transmission in 3D space,which is a promising platform for developing 3D topological photonic devices.
基金supported by the National Key R&D Program of China(Grant No.2021YFB3501503)the National Natural Science Foundation of China(Grant No.51474202)+2 种基金Network and Information Foundation of CAS(Grant No.CAS-WX2021SF-0102)the Key Project of Chinese Academy of Sciences(Grant No.ZDRW-CN-2021-2-5)J.X.Li also acknowledges the funding from China Postdoctoral Science Foundation(Grant Nos.2022T150660 and 2021M700152).
文摘The presence of a pair of Weyl and Dirac points(WP-DP)in topological semimetal states is intriguing and sought after due to the effects associated with chiral topological charges.However,identifying these states in real materials poses a significant challenge.In this study,by means of first-principles calculations we predict the coexistence of charge-2 Dirac and charge-2 Weyl phonons at high-symmetry points within a noncentrosymmetric P4_(1)2_(1)2 space group.Furthermore,we propose GeO_(2)as an ideal candidate for realizing these states.Notably,we observe two distinct surface arcs that connect the Dirac and Weyl points across the entire Brillouin zone,which could facilitate their detection in future experimental investigations.This study not only presents a tangible material for experimentalists to explore the topological properties of WP-DP states but also opens up new avenues in the quest for ideal platforms to study chiral particles.
基金supported by JSPS Kakenhi(No.15K05141)from Japan Society for the Promotion of Science
文摘In three-dimensional noncentrosymmetric materials two-fold screw rotation symmetry forces electron's energy bands to have Weyl points at which two bands touch. This is illustrated for space groups No. 19 (P212121 ) and No. 198 (P213), which have three orthogonal screw rotation axes. In the case of space groups No. 61 (Pbca) and No. 205 (Pa-3) that have extra inversion symmetry, Weyl points are promoted to four-fold degenerate line nodes in glide-invariant planes. The three-fold rotation symmetry present in the space groups No. 198 and No. 205 allows Weyl and Dirac points, respectively, to appear along its rotation axes in the Brillouin zone and generates four-fold and six-fold degeneracy at the F point and R point, respectively.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12174067 and 11804223)。
文摘We construct a three-dimensional topological superconductor Bogoliubov–de Gennes(BdG)Hamiltonian with the normal state being a three-dimensional topological insulator.By introducing inter-orbital spin-triplet pairings term△3,there are topological Majorana nodes in the bulk and they are connected by Majorana Fermi arcs on the surface,similar to the case of Weyl semimetal.Furthermore,by adding an inversion-breaking term to the normal state,momentum-independent pairing terms with different parities can coexist in the Bd G Hamiltonian,which creates more Majorana modes similar to Andreev bound states and a richer phase diagram.
基金supported by the Open Research Fund of Songshan Lake Materials Laboratory(Grant No.2022SLABFN27)National Natural Science Foundation of China(Grant Nos.12274364,and U1932155)+3 种基金Fundamental Research Funds for the Central Universities of China(Grant No.2019kfy XMBZ071)National Key R&D Program of China(Grant No.2022YFA1602602)Guangdong Basic and Applied Basic Research Foundation(Grant No.2022B1515120020)Pioneer and Leading Goose R&D Program of Zhejiang(Grant No.2022SDXHDX0005)。
文摘Topological magnetic Weyl semimetals have been proposed to host controllable chiral domain walls which bear a great prospect in device applications. To exploit them in applications, it is important to have a proper way to tune and manipulate these domain walls. One possible means is through magnetoelastic coupling. The involvement of rare earth in the lately proposed RAl X(R =rare earth, X = Si and Ge) family magnetic Weyl semimetals may provide such a platform. Here we present the transport and thermodynamic properties of Ce Al Ge under hydrostatic pressure. We find that pressure enhances the antiferromagnetic exchange in Ce Al Ge but essentially retains its magnetic structure. A large topological Hall effect with a pronounced loop shape is observed within the magnetically ordered state, and it splits into two regions under pressure. Such an unusual electromagnetic response is inferred to be a consequence of chiral magnetic domain walls. The unprecedented concomitance of its evolution under pressure and the reentrance of antiferromagnetic order strongly suggest the capability of switching on/off this electromagnetic response in noncentrosymmetric magnetic Weyl semimetals via magnetoelastic coupling.
基金supported by the National Key Research and Development Program of China(Grant No.2018FYA0305800)the National Natural Science Foundation of China(Grant Nos.11890701,11704128,11774275,11804101,11974005,and 11974120)+2 种基金the Guangdong Innovative and Entrepreneurial Research Team Program(Grant No.2016ZT06C594)the Guangdong Basic and Applied Basic Research Foundation(Grant No.2019B151502012)the Fundamental Research Funds for the Central Universities(Grant Nos.2018MS93,2019JQ07,and 2019ZD49)。
文摘The study of topological semimetals hosting spin-1 Weyl points(WPs)beyond Dirac points and WPs has attracted a great deal of attention.However,a spin-1 Weyl semimetal that exclusively possesses spin-1 WPs in a clean frequency window without being shadowed by any other nodal points is yet to be discovered.This study reports a spin-1 Weyl semimetal in a phononic crystal.Its spin-1 WPs are touched by two linear dispersions and an additional flat band and carry monopole charges(-2,0,2)or(2,0,-2)for the three bands from the bottom to the top.They result in double Fermi arcs,which occur between the first and second bands,as well as between the second and third bands.Further robust propagation is observed against the multiple joints and topological negative refraction of the acoustic surface arc wave.The results of this study create the basis for the exploration of the unusual properties of spin-1 Weyl physics on a macroscopic scale.