期刊文献+
共找到964篇文章
< 1 2 49 >
每页显示 20 50 100
MCWOA Scheduler:Modified Chimp-Whale Optimization Algorithm for Task Scheduling in Cloud Computing
1
作者 Chirag Chandrashekar Pradeep Krishnadoss +1 位作者 Vijayakumar Kedalu Poornachary Balasundaram Ananthakrishnan 《Computers, Materials & Continua》 SCIE EI 2024年第2期2593-2616,共24页
Cloud computing provides a diverse and adaptable resource pool over the internet,allowing users to tap into various resources as needed.It has been seen as a robust solution to relevant challenges.A significant delay ... Cloud computing provides a diverse and adaptable resource pool over the internet,allowing users to tap into various resources as needed.It has been seen as a robust solution to relevant challenges.A significant delay can hamper the performance of IoT-enabled cloud platforms.However,efficient task scheduling can lower the cloud infrastructure’s energy consumption,thus maximizing the service provider’s revenue by decreasing user job processing times.The proposed Modified Chimp-Whale Optimization Algorithm called Modified Chimp-Whale Optimization Algorithm(MCWOA),combines elements of the Chimp Optimization Algorithm(COA)and the Whale Optimization Algorithm(WOA).To enhance MCWOA’s identification precision,the Sobol sequence is used in the population initialization phase,ensuring an even distribution of the population across the solution space.Moreover,the traditional MCWOA’s local search capabilities are augmented by incorporating the whale optimization algorithm’s bubble-net hunting and random search mechanisms into MCWOA’s position-updating process.This study demonstrates the effectiveness of the proposed approach using a two-story rigid frame and a simply supported beam model.Simulated outcomes reveal that the new method outperforms the original MCWOA,especially in multi-damage detection scenarios.MCWOA excels in avoiding false positives and enhancing computational speed,making it an optimal choice for structural damage detection.The efficiency of the proposed MCWOA is assessed against metrics such as energy usage,computational expense,task duration,and delay.The simulated data indicates that the new MCWOA outpaces other methods across all metrics.The study also references the Whale Optimization Algorithm(WOA),Chimp Algorithm(CA),Ant Lion Optimizer(ALO),Genetic Algorithm(GA)and Grey Wolf Optimizer(GWO). 展开更多
关键词 Cloud computing SCHEDULING chimp optimization algorithm whale optimization algorithm
下载PDF
Hybrid Seagull and Whale Optimization Algorithm-Based Dynamic Clustering Protocol for Improving Network Longevity in Wireless Sensor Networks
2
作者 P.Vinoth Kumar K.Venkatesh 《China Communications》 SCIE CSCD 2024年第10期113-131,共19页
Energy efficiency is the prime concern in Wireless Sensor Networks(WSNs) as maximized energy consumption without essentially limits the energy stability and network lifetime. Clustering is the significant approach ess... Energy efficiency is the prime concern in Wireless Sensor Networks(WSNs) as maximized energy consumption without essentially limits the energy stability and network lifetime. Clustering is the significant approach essential for minimizing unnecessary transmission energy consumption with sustained network lifetime. This clustering process is identified as the Non-deterministic Polynomial(NP)-hard optimization problems which has the maximized probability of being solved through metaheuristic algorithms.This adoption of hybrid metaheuristic algorithm concentrates on the identification of the optimal or nearoptimal solutions which aids in better energy stability during Cluster Head(CH) selection. In this paper,Hybrid Seagull and Whale Optimization Algorithmbased Dynamic Clustering Protocol(HSWOA-DCP)is proposed with the exploitation benefits of WOA and exploration merits of SEOA to optimal CH selection for maintaining energy stability with prolonged network lifetime. This HSWOA-DCP adopted the modified version of SEagull Optimization Algorithm(SEOA) to handle the problem of premature convergence and computational accuracy which is maximally possible during CH selection. The inclusion of SEOA into WOA improved the global searching capability during the selection of CH and prevents worst fitness nodes from being selected as CH, since the spiral attacking behavior of SEOA is similar to the bubble-net characteristics of WOA. This CH selection integrates the spiral attacking principles of SEOA and contraction surrounding mechanism of WOA for improving computation accuracy to prevent frequent election process. It also included the strategy of levy flight strategy into SEOA for potentially avoiding premature convergence to attain better trade-off between the rate of exploration and exploitation in a more effective manner. The simulation results of the proposed HSWOADCP confirmed better network survivability rate, network residual energy and network overall throughput on par with the competitive CH selection schemes under different number of data transmission rounds.The statistical analysis of the proposed HSWOA-DCP scheme also confirmed its energy stability with respect to ANOVA test. 展开更多
关键词 CLUSTERING energy stability network lifetime seagull optimization algorithm(SEOA) whale optimization algorithm(woa) wireless sensor networks(WSNs)
下载PDF
Multi-strategy hybrid whale optimization algorithms for complex constrained optimization problems
3
作者 王振宇 WANG Lei 《High Technology Letters》 EI CAS 2024年第1期99-108,共10页
A multi-strategy hybrid whale optimization algorithm(MSHWOA)for complex constrained optimization problems is proposed to overcome the drawbacks of easily trapping into local optimum,slow convergence speed and low opti... A multi-strategy hybrid whale optimization algorithm(MSHWOA)for complex constrained optimization problems is proposed to overcome the drawbacks of easily trapping into local optimum,slow convergence speed and low optimization precision.Firstly,the population is initialized by introducing the theory of good point set,which increases the randomness and diversity of the population and lays the foundation for the global optimization of the algorithm.Then,a novel linearly update equation of convergence factor is designed to coordinate the abilities of exploration and exploitation.At the same time,the global exploration and local exploitation capabilities are improved through the siege mechanism of Harris Hawks optimization algorithm.Finally,the simulation experiments are conducted on the 6 benchmark functions and Wilcoxon rank sum test to evaluate the optimization performance of the improved algorithm.The experimental results show that the proposed algorithm has more significant improvement in optimization accuracy,convergence speed and robustness than the comparison algorithm. 展开更多
关键词 whale optimization algorithm(woa) good point set nonlinear convergence factor siege mechanism
下载PDF
An Optimal Node Localization in WSN Based on Siege Whale Optimization Algorithm
4
作者 Thi-Kien Dao Trong-The Nguyen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2201-2237,共37页
Localization or positioning scheme in Wireless sensor networks (WSNs) is one of the most challenging andfundamental operations in various monitoring or tracking applications because the network deploys a large areaand... Localization or positioning scheme in Wireless sensor networks (WSNs) is one of the most challenging andfundamental operations in various monitoring or tracking applications because the network deploys a large areaand allocates the acquired location information to unknown devices. The metaheuristic approach is one of themost advantageous ways to deal with this challenging issue and overcome the disadvantages of the traditionalmethods that often suffer from computational time problems and small network deployment scale. This studyproposes an enhanced whale optimization algorithm that is an advanced metaheuristic algorithm based on thesiege mechanism (SWOA) for node localization inWSN. The objective function is modeled while communicatingon localized nodes, considering variables like delay, path loss, energy, and received signal strength. The localizationapproach also assigns the discovered location data to unidentified devices with the modeled objective functionby applying the SWOA algorithm. The experimental analysis is carried out to demonstrate the efficiency of thedesigned localization scheme in terms of various metrics, e.g., localization errors rate, converges rate, and executedtime. Compared experimental-result shows that theSWOA offers the applicability of the developed model forWSNto perform the localization scheme with excellent quality. Significantly, the error and convergence values achievedby the SWOA are less location error, faster in convergence and executed time than the others compared to at least areduced 1.5% to 4.7% error rate, and quicker by at least 4%and 2% in convergence and executed time, respectivelyfor the experimental scenarios. 展开更多
关键词 Node localization whale optimization algorithm wireless sensor networks siege whale optimization algorithm optimization
下载PDF
Multi-Strategy Assisted Multi-Objective Whale Optimization Algorithm for Feature Selection
5
作者 Deng Yang Chong Zhou +2 位作者 Xuemeng Wei Zhikun Chen Zheng Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1563-1593,共31页
In classification problems,datasets often contain a large amount of features,but not all of them are relevant for accurate classification.In fact,irrelevant features may even hinder classification accuracy.Feature sel... In classification problems,datasets often contain a large amount of features,but not all of them are relevant for accurate classification.In fact,irrelevant features may even hinder classification accuracy.Feature selection aims to alleviate this issue by minimizing the number of features in the subset while simultaneously minimizing the classification error rate.Single-objective optimization approaches employ an evaluation function designed as an aggregate function with a parameter,but the results obtained depend on the value of the parameter.To eliminate this parameter’s influence,the problem can be reformulated as a multi-objective optimization problem.The Whale Optimization Algorithm(WOA)is widely used in optimization problems because of its simplicity and easy implementation.In this paper,we propose a multi-strategy assisted multi-objective WOA(MSMOWOA)to address feature selection.To enhance the algorithm’s search ability,we integrate multiple strategies such as Levy flight,Grey Wolf Optimizer,and adaptive mutation into it.Additionally,we utilize an external repository to store non-dominant solution sets and grid technology is used to maintain diversity.Results on fourteen University of California Irvine(UCI)datasets demonstrate that our proposed method effectively removes redundant features and improves classification performance.The source code can be accessed from the website:https://github.com/zc0315/MSMOWOA. 展开更多
关键词 Multi-objective optimization whale optimization algorithm multi-strategy feature selection
下载PDF
Hybrid Prairie Dog and Beluga Whale Optimization Algorithm for Multi-Objective Load Balanced-Task Scheduling in Cloud Computing Environments
6
作者 K Ramya Senthilselvi Ayothi 《China Communications》 SCIE CSCD 2024年第7期307-324,共18页
The cloud computing technology is utilized for achieving resource utilization of remotebased virtual computer to facilitate the consumers with rapid and accurate massive data services.It utilizes on-demand resource pr... The cloud computing technology is utilized for achieving resource utilization of remotebased virtual computer to facilitate the consumers with rapid and accurate massive data services.It utilizes on-demand resource provisioning,but the necessitated constraints of rapid turnaround time,minimal execution cost,high rate of resource utilization and limited makespan transforms the Load Balancing(LB)process-based Task Scheduling(TS)problem into an NP-hard optimization issue.In this paper,Hybrid Prairie Dog and Beluga Whale Optimization Algorithm(HPDBWOA)is propounded for precise mapping of tasks to virtual machines with the due objective of addressing the dynamic nature of cloud environment.This capability of HPDBWOA helps in decreasing the SLA violations and Makespan with optimal resource management.It is modelled as a scheduling strategy which utilizes the merits of PDOA and BWOA for attaining reactive decisions making with respect to the process of assigning the tasks to virtual resources by considering their priorities into account.It addresses the problem of pre-convergence with wellbalanced exploration and exploitation to attain necessitated Quality of Service(QoS)for minimizing the waiting time incurred during TS process.It further balanced exploration and exploitation rates for reducing the makespan during the task allocation with complete awareness of VM state.The results of the proposed HPDBWOA confirmed minimized energy utilization of 32.18% and reduced cost of 28.94% better than approaches used for investigation.The statistical investigation of the proposed HPDBWOA conducted using ANOVA confirmed its efficacy over the benchmarked systems in terms of throughput,system,and response time. 展开更多
关键词 Beluga whale optimization algorithm(Bwoa) cloud computing Improved Hopcroft-Karp algorithm Infrastructure as a Service(IaaS) Prairie Dog optimization algorithm(PDOA) Virtual Machine(VM)
下载PDF
BHJO: A Novel Hybrid Metaheuristic Algorithm Combining the Beluga Whale, Honey Badger, and Jellyfish Search Optimizers for Solving Engineering Design Problems
7
作者 Farouq Zitouni Saad Harous +4 位作者 Abdulaziz S.Almazyad Ali Wagdy Mohamed Guojiang Xiong Fatima Zohra Khechiba Khadidja  Kherchouche 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期219-265,共47页
Hybridizing metaheuristic algorithms involves synergistically combining different optimization techniques to effectively address complex and challenging optimization problems.This approach aims to leverage the strengt... Hybridizing metaheuristic algorithms involves synergistically combining different optimization techniques to effectively address complex and challenging optimization problems.This approach aims to leverage the strengths of multiple algorithms,enhancing solution quality,convergence speed,and robustness,thereby offering a more versatile and efficient means of solving intricate real-world optimization tasks.In this paper,we introduce a hybrid algorithm that amalgamates three distinct metaheuristics:the Beluga Whale Optimization(BWO),the Honey Badger Algorithm(HBA),and the Jellyfish Search(JS)optimizer.The proposed hybrid algorithm will be referred to as BHJO.Through this fusion,the BHJO algorithm aims to leverage the strengths of each optimizer.Before this hybridization,we thoroughly examined the exploration and exploitation capabilities of the BWO,HBA,and JS metaheuristics,as well as their ability to strike a balance between exploration and exploitation.This meticulous analysis allowed us to identify the pros and cons of each algorithm,enabling us to combine them in a novel hybrid approach that capitalizes on their respective strengths for enhanced optimization performance.In addition,the BHJO algorithm incorporates Opposition-Based Learning(OBL)to harness the advantages offered by this technique,leveraging its diverse exploration,accelerated convergence,and improved solution quality to enhance the overall performance and effectiveness of the hybrid algorithm.Moreover,the performance of the BHJO algorithm was evaluated across a range of both unconstrained and constrained optimization problems,providing a comprehensive assessment of its efficacy and applicability in diverse problem domains.Similarly,the BHJO algorithm was subjected to a comparative analysis with several renowned algorithms,where mean and standard deviation values were utilized as evaluation metrics.This rigorous comparison aimed to assess the performance of the BHJOalgorithmabout its counterparts,shedding light on its effectiveness and reliability in solving optimization problems.Finally,the obtained numerical statistics underwent rigorous analysis using the Friedman post hoc Dunn’s test.The resulting numerical values revealed the BHJO algorithm’s competitiveness in tackling intricate optimization problems,affirming its capability to deliver favorable outcomes in challenging scenarios. 展开更多
关键词 Global optimization hybridization of metaheuristics beluga whale optimization honey badger algorithm jellyfish search optimizer chaotic maps opposition-based learning
下载PDF
Model Parameters Identification and Backstepping Control of Lower Limb Exoskeleton Based on Enhanced Whale Algorithm
8
作者 Yan Shi Jiange Kou +2 位作者 Zhenlei Chen Yixuan Wang Qing Guo 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第2期100-114,共15页
Exoskeletons generally require accurate dynamic models to design the model-based controller conveniently under the human-robot interaction condition.However,due to unknown model parameters such as the mass,moment of i... Exoskeletons generally require accurate dynamic models to design the model-based controller conveniently under the human-robot interaction condition.However,due to unknown model parameters such as the mass,moment of inertia and mechanical size,the dynamic model of exoskeletons is difficult to construct.Hence,an enhanced whale optimization algorithm(EWOA)is proposed to identify the exoskeleton model parameters.Meanwhile,the periodic excitation trajectories are designed by finite Fourier series to input the desired position demand of exoskeletons with mechanical physical constraints.Then a backstepping controller based on the identified model is adopted to improve the human-robot wearable comfortable performance under cooperative motion.Finally,the proposed Model parameters identification and control are verified by a two-DOF exoskeletons platform.The knee joint motion achieves a steady-state response after 0.5 s.Meanwhile,the position error of hip joint response is less than 0.03 rad after 0.9 s.In addition,the steady-state human-robot interaction torque of the two joints is constrained within 15 N·m.This research proposes a whale optimization algorithm to optimize the excitation trajectory and identify model parameters.Furthermore,an enhanced mutation strategy is adopted to avoid whale evolution’s unsatisfactory local optimal value. 展开更多
关键词 Parameter identification Enhanced whale optimization algorithm(Ewoa) BACKSTEPPING Human-robot interaction Lower limb exoskeleton
下载PDF
A Whale Optimization Algorithm with Distributed Collaboration and Reverse Learning Ability 被引量:2
9
作者 Zhedong Xu Yongbo Su +1 位作者 Fang Yang Ming Zhang 《Computers, Materials & Continua》 SCIE EI 2023年第6期5965-5986,共22页
Due to the development of digital transformation,intelligent algorithms are getting more and more attention.The whale optimization algorithm(WOA)is one of swarm intelligence optimization algorithms and is widely used ... Due to the development of digital transformation,intelligent algorithms are getting more and more attention.The whale optimization algorithm(WOA)is one of swarm intelligence optimization algorithms and is widely used to solve practical engineering optimization problems.However,with the increased dimensions,higher requirements are put forward for algorithm performance.The double population whale optimization algorithm with distributed collaboration and reverse learning ability(DCRWOA)is proposed to solve the slow convergence speed and unstable search accuracy of the WOA algorithm in optimization problems.In the DCRWOA algorithm,the novel double population search strategy is constructed.Meanwhile,the reverse learning strategy is adopted in the population search process to help individuals quickly jump out of the non-ideal search area.Numerical experi-ments are carried out using standard test functions with different dimensions(10,50,100,200).The optimization case of shield construction parameters is also used to test the practical application performance of the proposed algo-rithm.The results show that the DCRWOA algorithm has higher optimization accuracy and stability,and the convergence speed is significantly improved.Therefore,the proposed DCRWOA algorithm provides a better method for solving practical optimization problems. 展开更多
关键词 whale optimization algorithm double population cooperation DISTRIBUTION reverse learning convergence speed
下载PDF
Mango Pest Detection Using Entropy-ELM with Whale Optimization Algorithm 被引量:2
10
作者 U.Muthaiah S.Chitra 《Intelligent Automation & Soft Computing》 SCIE 2023年第3期3447-3458,共12页
Image processing,agricultural production,andfield monitoring are essential studies in the researchfield.Plant diseases have an impact on agricultural production and quality.Agricultural disease detection at a preliminar... Image processing,agricultural production,andfield monitoring are essential studies in the researchfield.Plant diseases have an impact on agricultural production and quality.Agricultural disease detection at a preliminary phase reduces economic losses and improves the quality of crops.Manually identifying the agricultural pests is usually evident in plants;also,it takes more time and is an expensive technique.A drone system has been developed to gather photographs over enormous regions such as farm areas and plantations.An atmosphere generates vast amounts of data as it is monitored closely;the evaluation of this big data would increase the production of agricultural production.This paper aims to identify pests in mango trees such as hoppers,mealybugs,inflorescence midges,fruitflies,and stem borers.Because of the massive volumes of large-scale high-dimensional big data collected,it is necessary to reduce the dimensionality of the input for classify-ing images.The community-based cumulative algorithm was used to classify the pests in the existing system.The proposed method uses the Entropy-ELM method with Whale Optimization to improve the classification in detecting pests in agricul-ture.The Entropy-ELM method with the Whale Optimization Algorithm(WOA)is used for feature selection,enhancing mango pests’classification accuracy.Support Vector Machines(SVMs)are especially effective for classifying while users get var-ious classes in which they are interested.They are created as suitable classifiers to categorize any dataset in Big Data effectively.The proposed Entropy-ELM-WOA is more capable compared to the existing systems. 展开更多
关键词 whale optimization algorithm Entropy-ELM feature selection pests detection support vector machine mango trees classification
下载PDF
AWK-TIS:An Improved AK-IS Based on Whale Optimization Algorithm and Truncated Importance Sampling for Reliability Analysis 被引量:1
11
作者 Qiang Qin Xiaolei Cao Shengpeng Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第5期1457-1480,共24页
In this work,an improved active kriging method based on the AK-IS and truncated importance sampling(TIS)method is proposed to efficiently evaluate structural reliability.The novel method called AWK-TIS is inspired by ... In this work,an improved active kriging method based on the AK-IS and truncated importance sampling(TIS)method is proposed to efficiently evaluate structural reliability.The novel method called AWK-TIS is inspired by AK-IS and RBF-GA previously published in the literature.The innovation of the AWK-TIS is that TIS is adopted to lessen the sample pool size significantly,and the whale optimization algorithm(WOA)is employed to acquire the optimal Krigingmodel and themost probable point(MPP).To verify the performance of theAWK-TISmethod for structural reliability,four numerical cases which are utilized as benchmarks in literature and one real engineering problem about a jet van manipulate mechanism are tested.The results indicate the accuracy and efficiency of the proposed method. 展开更多
关键词 Structural reliability active kriging whale optimization algorithm AK-IS
下载PDF
Improved Arithmetic Optimization Algorithm with Multi-Strategy Fusion Mechanism and Its Application in Engineering Design
12
作者 Yu Liu Minge Chen +3 位作者 Ran Yin Jianwei Li Yafei Zhao Xiaohua Zhang 《Journal of Applied Mathematics and Physics》 2024年第6期2212-2253,共42页
This article addresses the issues of falling into local optima and insufficient exploration capability in the Arithmetic Optimization Algorithm (AOA), proposing an improved Arithmetic Optimization Algorithm with a mul... This article addresses the issues of falling into local optima and insufficient exploration capability in the Arithmetic Optimization Algorithm (AOA), proposing an improved Arithmetic Optimization Algorithm with a multi-strategy mechanism (BSFAOA). This algorithm introduces three strategies within the standard AOA framework: an adaptive balance factor SMOA based on sine functions, a search strategy combining Spiral Search and Brownian Motion, and a hybrid perturbation strategy based on Whale Fall Mechanism and Polynomial Differential Learning. The BSFAOA algorithm is analyzed in depth on the well-known 23 benchmark functions, CEC2019 test functions, and four real optimization problems. The experimental results demonstrate that the BSFAOA algorithm can better balance the exploration and exploitation capabilities, significantly enhancing the stability, convergence mode, and search efficiency of the AOA algorithm. 展开更多
关键词 Arithmetic optimization algorithm Adaptive Balance Factor Spiral Search Brownian Motion whale Fall Mechanism
下载PDF
Automated Pavement Crack Detection Using Deep Feature Selection and Whale Optimization Algorithm
13
作者 Shorouq Alshawabkeh Li Wu +3 位作者 Daojun Dong Yao Cheng Liping Li Mohammad Alanaqreh 《Computers, Materials & Continua》 SCIE EI 2023年第10期63-77,共15页
Pavement crack detection plays a crucial role in ensuring road safety and reducing maintenance expenses.Recent advancements in deep learning(DL)techniques have shown promising results in detecting pavement cracks;howe... Pavement crack detection plays a crucial role in ensuring road safety and reducing maintenance expenses.Recent advancements in deep learning(DL)techniques have shown promising results in detecting pavement cracks;however,the selection of relevant features for classification remains challenging.In this study,we propose a new approach for pavement crack detection that integrates deep learning for feature extraction,the whale optimization algorithm(WOA)for feature selection,and random forest(RF)for classification.The performance of the models was evaluated using accuracy,recall,precision,F1 score,and area under the receiver operating characteristic curve(AUC).Our findings reveal that Model 2,which incorporates RF into the ResNet-18 architecture,outperforms baseline Model 1 across all evaluation metrics.Nevertheless,our proposed model,which combines ResNet-18 with both WOA and RF,achieves significantly higher accuracy,recall,precision,and F1 score compared to the other two models.These results underscore the effectiveness of integrating RF and WOA into ResNet-18 for pavement crack detection applications.We applied the proposed approach to a dataset of pavement images,achieving an accuracy of 97.16%and an AUC of 0.984.Our results demonstrate that the proposed approach surpasses existing methods for pavement crack detection,offering a promising solution for the automatic identification of pavement cracks.By leveraging this approach,potential safety hazards can be identified more effectively,enabling timely repairs and maintenance measures.Lastly,the findings of this study also emphasize the potential of integrating RF and WOA with deep learning for pavement crack detection,providing road authorities with the necessary tools to make informed decisions regarding road infrastructure maintenance. 展开更多
关键词 Pavement crack detection deep learning feature selection whale optimization algorithm civil engineering
下载PDF
An Improved Whale Optimization Algorithm for Global Optimization and Realized Volatility Prediction
14
作者 Xiang Wang Liangsa Wang +1 位作者 Han Li Yibin Guo 《Computers, Materials & Continua》 SCIE EI 2023年第12期2935-2969,共35页
The original whale optimization algorithm(WOA)has a low initial population quality and tends to converge to local optimal solutions.To address these challenges,this paper introduces an improved whale optimization algo... The original whale optimization algorithm(WOA)has a low initial population quality and tends to converge to local optimal solutions.To address these challenges,this paper introduces an improved whale optimization algorithm called OLCHWOA,incorporating a chaos mechanism and an opposition-based learning strategy.This algorithm introduces chaotic initialization and opposition-based initialization operators during the population initialization phase,thereby enhancing the quality of the initial whale population.Additionally,including an elite opposition-based learning operator significantly improves the algorithm’s global search capabilities during iterations.The work and contributions of this paper are primarily reflected in two aspects.Firstly,an improved whale algorithm with enhanced development capabilities and a wide range of application scenarios is proposed.Secondly,the proposed OLCHWOA is used to optimize the hyperparameters of the Long Short-Term Memory(LSTM)networks.Subsequently,a prediction model for Realized Volatility(RV)based on OLCHWOA-LSTM is proposed to optimize hyperparameters automatically.To evaluate the performance of OLCHWOA,a series of comparative experiments were conducted using a variety of advanced algorithms.These experiments included 38 standard test functions from CEC2013 and CEC2019 and three constrained engineering design problems.The experimental results show that OLCHWOA ranks first in accuracy and stability under the same maximum fitness function calls budget.Additionally,the China Securities Index 300(CSI 300)dataset is used to evaluate the effectiveness of the proposed OLCHWOA-LSTM model in predicting RV.The comparison results with the other eight models show that the proposed model has the highest accuracy and goodness of fit in predicting RV.This further confirms that OLCHWOA effectively addresses real-world optimization problems. 展开更多
关键词 whale optimization algorithm chaos mechanism opposition-based learning long short-term memory realized volatility
下载PDF
基于IWOA-SA-Elman神经网络的短期风电功率预测 被引量:2
15
作者 刘吉成 朱玺瑞 于晶 《太阳能学报》 EI CAS CSCD 北大核心 2024年第1期143-150,共8页
由于风力发电的随机性和不确定性使其短期功率的预测工作十分困难,而神经网络模型依靠其强大的自学习能力在风电功率预测领域有着广泛的应用。但神经网络预测精度受初始权重影响较大,且易出现过拟合的问题。为此构建一种基于改进鲸鱼算... 由于风力发电的随机性和不确定性使其短期功率的预测工作十分困难,而神经网络模型依靠其强大的自学习能力在风电功率预测领域有着广泛的应用。但神经网络预测精度受初始权重影响较大,且易出现过拟合的问题。为此构建一种基于改进鲸鱼算法和模拟退火组合优化的Elman神经网络短期风电功率预测模型,模型首先利用改进鲸鱼算法结合模拟退火策略获得高质量神经网络初始权值,接着引入正则化损失函数防止其过拟合,最后以西班牙瓦伦西亚某风电场陆上短期风电功率为研究对象,将该算法与BP、LSTM、Elman、WOA-Elman、IWOA-Elman 5种神经网络算法进行算法性能测试对比,结果表明IWOA-SA-Elman神经网络模型预测误差最小,验证了该算法的合理性和有效性。 展开更多
关键词 风电 ELMAN神经网络 预测 模拟退火 鲸鱼优化算法
下载PDF
基于WOA-BP神经网络下马铃薯产量预测分析模型 被引量:2
16
作者 赵丙秀 董宁 《农机化研究》 北大核心 2024年第3期47-51,共5页
马铃薯是我国重要的粮食作物之一,营养丰富,用途广泛,是一种谷物、蔬菜和水果功能兼具的食物,其蛋白质含量远高于其他块茎类食物,且富含优质的氨基酸。马铃薯生育期短,在湖北平原、丘陵地区冬种春收适宜发展早熟品种,对于填补全国南北... 马铃薯是我国重要的粮食作物之一,营养丰富,用途广泛,是一种谷物、蔬菜和水果功能兼具的食物,其蛋白质含量远高于其他块茎类食物,且富含优质的氨基酸。马铃薯生育期短,在湖北平原、丘陵地区冬种春收适宜发展早熟品种,对于填补全国南北方鲜薯市场供应空档期具有重要意义。因此,马铃薯产量的高效预测对于制定生长期间的种植管理措施及相关决策具有重要意义。为此,针对传统BP神经网络在产量预测中存在精度低、鲁棒性差等问题,利用鲸鱼算法(Whale optimization algorithm,WOA)对BP神经网络模型进行优化。同时,基于湖北地区2009-2021年间田间物联网获取的气象因子(大气湿度、大气温度、降雨量)、田间水热因子及马铃薯产量,采用BP神经网络模型、GA-BP神经网络模型(遗传算法优化)及WOA-BP神经网络模型对所选地区马铃薯产量进行预测。研究结果表明:WOA-BP神经网络模型精度明显高于GA-BP神经网络模型及BP神经网络模型,R2达到0.9764,预测值与试验值之间拟合程度较高,表明基于WOA-BP神经网络模型可以更加科学、合理、准确地进行马铃薯产量预测。 展开更多
关键词 马铃薯 神经网络模型 产量预测 鲸鱼优化算法
下载PDF
基于多源信息融合和WOA-CNN-LSTM的外脚手架隐患分类预警研究 被引量:1
17
作者 赵江平 张雪莹 侯刚 《安全与环境学报》 CAS CSCD 北大核心 2024年第3期933-942,共10页
面对施工现场外脚手架隐患信息的多样性,传统的基于传感器监测的单一信号预警研究存在容错力不佳、含有信息有限等问题。针对施工现场外脚手架“图像+监测”数据,提出一种基于数据层和特征层信息融合的脚手架隐患分类预警方法。首先,利... 面对施工现场外脚手架隐患信息的多样性,传统的基于传感器监测的单一信号预警研究存在容错力不佳、含有信息有限等问题。针对施工现场外脚手架“图像+监测”数据,提出一种基于数据层和特征层信息融合的脚手架隐患分类预警方法。首先,利用Revit三维建模软件建立外脚手架实体模型,对不同初始隐患下的外脚手架进行有限元分析,划分隐患预警等级;其次,利用无迹卡尔曼滤波算法(Unscented Kalman Filter,UKF)及卷积长短时记忆网络(Convolutional Neural Network-Long Short Term Memory Network,CNN-LSTM)实现脚手架同类信息数据层融合及异类信息特征层融合;最后,通过实时收集西安市某在建项目落地式双排扣件式钢管脚手架隐患信息,对其进行分类预警,并使用鲸鱼优化算法(Whale Optimization Algorithm,WOA)对CNN-LSTM网络进行参数优化,发现隐藏节点个数为30、学习率为0.0072、正则化系数为1×10^(-4)时分类效果最佳,优化后预警精度达到了91.4526%。通过可视化WOA-CNN-LSTM、CNN-LSTM、CNN-SVM(Support Vector Machine,支持向量机)及CNN-GRU(Gate Recurrent Unit,门控循环单元)分类预警结果,证实了优化后的CNN-LSTM网络在脚手架分类预警方面的优越性。 展开更多
关键词 安全工程 多源信息融合 鲸鱼优化算法 卷积长短时记忆网络 可视化
下载PDF
基于AMOWOA的区域综合能源系统运行优化调度
18
作者 韩永明 王新鲁 +3 位作者 耿志强 朱群雄 毕帅 张红斌 《自动化学报》 EI CAS CSCD 北大核心 2024年第3期576-588,共13页
目前,智能优化算法已广泛应用于工程优化中,在当前多能耦合与互补的能源发展趋势下,仅考虑系统经济指标的单目标优化模式已经不再适用于目前区域综合能源系统(Integrated energy system, IES)的运行优化调度,需要研究一种多目标运行策... 目前,智能优化算法已广泛应用于工程优化中,在当前多能耦合与互补的能源发展趋势下,仅考虑系统经济指标的单目标优化模式已经不再适用于目前区域综合能源系统(Integrated energy system, IES)的运行优化调度,需要研究一种多目标运行策略来解决区域综合能源系统的运行优化调度问题.首先综合考虑经济与能源利用两个指标并结合商业住宅区域的特性,以系统日运行收益和一次能源利用率为优化目标构建商业住宅区域综合能源系统多目标运行优化调度模型.其次由于传统多目标智能优化算法缺乏一种最优解综合评价方法,基于非支配排序以及拥挤度计算的多目标算法框架,提出一种利用模糊一致矩阵选取全局最优解的多目标鲸鱼优化算法(A multi-objective whale optimization algorithm, AMOWOA),并将提出算法对商住区域综合能源系统多目标运行优化调度模型进行求解.最后以华东某商业住宅区域综合能源系统为例进行仿真,验证了该方法的有效性和可行性. 展开更多
关键词 多目标优化 综合能源系统 动态层次分析 鲸鱼优化算法
下载PDF
基于E-WOA与AnyLogic耦合的土石方调配机械配置优化
19
作者 黄建文 王明良 +3 位作者 王兴霞 王宇峰 姜海龙 李丽芳 《水力发电学报》 CSCD 北大核心 2024年第4期112-124,共13页
机械配置是土石方调配工程的核心,合理的机械配置是工程施工成本、进度和质量的有效保障。为了精确、高效地寻求出最优的机械配置方案,提出了增强型鲸鱼算法(E-WOA)与AnyLogic耦合的土石方调配机械配置优化方法。首先,通过系统分析土石... 机械配置是土石方调配工程的核心,合理的机械配置是工程施工成本、进度和质量的有效保障。为了精确、高效地寻求出最优的机械配置方案,提出了增强型鲸鱼算法(E-WOA)与AnyLogic耦合的土石方调配机械配置优化方法。首先,通过系统分析土石方调配流程,建立总费用最小的优化模型;其次,采用AnyLogic仿真平台构建了基于多智能体的仿真模型,全面描述设备(挖掘机、自卸汽车、推土机、碾压机)、道路、平台(卸料平台、停车平台)等实体元素之间的交互关系和动态过程;最后,引入收敛速度快、全局性强的E-WOA算法与AnyLogic进行耦合,开发仿真控制器实现耦合模型对优化问题的求解,并结合工程实例进行了分析。结果表明该方法可以节省11.11%的时间和27.34%的费用,为土石方调配工程施工管理决策提供借鉴。 展开更多
关键词 土石方调配 机械配置优化 仿真模型 增强型鲸鱼算法 ANYLOGIC
下载PDF
基于多模型和改进WOA算法的Delta机器人柔性夹持器抓取方法研究
20
作者 张敏 刘翌南 +1 位作者 陈爱群 袁晓红 《食品与机械》 CSCD 北大核心 2024年第7期68-73,116,共7页
[目的]解决Delta机器人柔性夹持器抓取方法存在的控制精度和适应性较差等问题。[方法]以Delta机器人柔性夹持器为研究对象,提出一种多模型和改进鲸鱼算法相结合的Delta机器人柔性夹持器抓取方法。建立稳定抓取优化模型,在抓持对象表面... [目的]解决Delta机器人柔性夹持器抓取方法存在的控制精度和适应性较差等问题。[方法]以Delta机器人柔性夹持器为研究对象,提出一种多模型和改进鲸鱼算法相结合的Delta机器人柔性夹持器抓取方法。建立稳定抓取优化模型,在抓持对象表面寻求最佳接触位置。建立无损抓取优化模型,在确保稳定抓起物体的前提下使接触力尽可能地小。结合粒子群算法和鲸鱼算法求解模型。通过试验验证了所提抓取方法的优越性。[结果]所提方法不仅具有良好的控制精度,还能够适应不同形状和大小的物体,具有较高的灵活性和适应性,抓取成功率>96%,抓取损伤率为0。[结论]所提方法有效提高了Delta机器人柔性夹持器抓取方法的性能,适用于果蔬和易碎物品的分拣工作。 展开更多
关键词 Delta机器人 柔性夹持器 稳定抓取 无损抓取 鲸鱼算法 粒子群算法
下载PDF
上一页 1 2 49 下一页 到第
使用帮助 返回顶部