This paper develops the Dark Matter by Quantum Gravitation theory, DMbQG theory hereafter, in clusters of galaxies in the cosmologic model ΛCDM of the Universe. Originally this theory was developed by the author for ...This paper develops the Dark Matter by Quantum Gravitation theory, DMbQG theory hereafter, in clusters of galaxies in the cosmologic model ΛCDM of the Universe. Originally this theory was developed by the author for galaxies, especially using MW and M31 rotation curves. An important result got by the DMbQG theory is that the total mass associated to a galactic halo depend on the square root of radius, being its dominion unbounded. Apparently, this result would be absurd because of divergence of the total mass. As the DE is negligible at galactic scale, it is needed to extend the theory to clusters in order to study the capacity of DE to counterbalance to DM. Thanks this property, the DMbQG theory finds unexpected theoretical results. In this work, it is defined, the total mass as baryonic matter plus DM and the gravitating mass as the addition of the total mass plus the negative mass associated to dark energy. In clusters it is defined the zero gravity radius (RZG hereafter) as the radius needed by the dark energy to counterbalance the total mass. It has been found that the ratio RZG/RVIRIAL ≈ 7.3 and its Total mass associated at RZG is ≈2.7 MVIRIAL. In addition, it has been calculated that the sphere with the extended halo radius RE = 1.85 RZG has a ratio DM density versus DE density equal to 3/7 and its total mass associated at RE is ≈3.6 MVIRIAL. This works postulates that the factor 3.6 may equilibrate perfectly the strong imbalance between the Local mater density parameter (0.08) versus the current Global matter density one (0.3). Currently, this fact is a big conundrum in cosmology, see chapter 7. Also it has been found that the zero velocity radius, RZV hereafter, i.e. the cluster border because of the Hubble flow, is ≈0.6 RZG and its gravitating mass is ≈ 1.5 MVIR. By derivation of gravitating mass function, it is calculated that at 0.49 RZG, this function reaches its maximum whose value is ≈1.57 MVIR. Throughout the paper, some of these results have been validated with recent data published for the Virgo cluster. As Virgo is the nearest big cluster, it is the perfect benchmark to validate any new theory about DM and DE. These new theoretical findings offer to scientific community a wide number of tests to validate or reject the theory. The validation of DMbQG theory would mean to know the nature of DM that at the present, it is an important challenge for the astrophysics science.展开更多
Mass plays a role in many physical phenomena, including the behavior of subatomic particles, the formation and behavior of stars and galaxies, and gravitational interactions between objects. The density of vacuum, 9.5...Mass plays a role in many physical phenomena, including the behavior of subatomic particles, the formation and behavior of stars and galaxies, and gravitational interactions between objects. The density of vacuum, 9.5 × 10−27 kg/m3, is a crucial parameter in the theory of cosmic inflation and is responsible for the accelerated expansion of the universe in its early stages. This vacuum energy interacts with matter and manifests itself as mass, which can be described as flow and vortex formation using the laws of hydrodynamics. The vortex model of elementary particles, in conjunction with the laws of hydrodynamics, provides an elegant explanation for the origin of mass and the relationship between mass and energy, with profound implications for the behavior of objects at high velocities and strong gravitational fields. The vacuum behaves as a compressible superfluid, thus elementary particles can be described as vortices of the vacuum. The equations of hydrodynamics for vortices can be applied to describe the nature and value of the mass of particles. The implications of understanding the nature of mass are vast and profound. From elucidating the fundamental properties of particles to informing the design of advanced materials and technologies, this knowledge is indispensable. It drives advancements across numerous fields, transforming both our theoretical understanding and practical capabilities. Continued research into the nature of mass promises to unlock further insights, fostering innovation and expanding the frontiers of science and technology.展开更多
In this paper, we discuss a Many Worlds Interpretation (MWI) of Dark Energy and Dark Matter. The universe is viewed cosmologically as a fermionic fluid with a hydrostatic pressure from “Zitterbewegung”, the quantum ...In this paper, we discuss a Many Worlds Interpretation (MWI) of Dark Energy and Dark Matter. The universe is viewed cosmologically as a fermionic fluid with a hydrostatic pressure from “Zitterbewegung”, the quantum “zig-zagging” of Dirac particles. At each point in space-time, the pressure from all possible velocity states existing in the Many Worlds sums to provide a dark energy. This provides a ratio of matter energy to pressure energy close to that observed experimentally. Visible matter is the matter observed or measured in a particular velocity state and dark matter is then considered as the unobserved fermion contributions from different orthogonal spatial directions.展开更多
Dwarf irregular galaxies(dIrrs),as rotationally supported systems,have more reliable J-factor measurements than dwarf spheroidal galaxies and have received attention as targets for dark matter detection in recent year...Dwarf irregular galaxies(dIrrs),as rotationally supported systems,have more reliable J-factor measurements than dwarf spheroidal galaxies and have received attention as targets for dark matter detection in recent years.In this paper,we use 10 yr of IceCube muon-track data and an unbinned maximum-likelihood-ratio method to search for neutrino signals beyond the background from the directions of seven dIrrs,aiming to detect neutrinos produced by heavy annihilation dark matter.We do not detect any significant signal.Based on such null results,we calculate the upper limits on the velocity-averaged annihilation cross section for 1 TeV–10 PeV dark matter.Our limits,although weaker than the strictest constraints in the literature in this mass range,are also a good complement to the existing results considering the more reliable J-factor measurements of dIrrs.展开更多
The Theory of General Singularity is presented, unifying quantum field theory, general relativity, and the standard model. This theory posits phonons as fundamental excitations in a quantum vacuum, modeled as a Bose-E...The Theory of General Singularity is presented, unifying quantum field theory, general relativity, and the standard model. This theory posits phonons as fundamental excitations in a quantum vacuum, modeled as a Bose-Einstein condensate. Through key equations, the role of phonons as intermediaries between matter, energy, and spacetime geometry is demonstrated. The theory expands Einsteins field equations to differentiate between visible and dark matter, and revises the standard model by incorporating phonons. It addresses dark matter, dark energy, gravity, and phase transitions, while making testable predictions. The theory proposes that singularities, the essence of particles and black holes, are quantum entities ubiquitous in nature, constituting the very essence of elementary particles, seen as micro black holes or quantum fractal structures of spacetime. As the theory is refined with increasing mathematical rigor, it builds upon the foundation of initial physical intuition, connecting the spacetime continuum of general relativity with the hydrodynamics of the quantum vacuum. Inspired by the insights of Tesla and Majorana, who believed that physical intuition justifies the infringement of mathematical rigor in the early stages of theory development, this work aims to advance the understanding of the fundamental laws of the universe and the perception of reality.展开更多
This article describes an extension of the theory of vortices to electromagnetic types with a start point from known fluid systems. From this, properties of gravity-generating objects (particles and black holes) can b...This article describes an extension of the theory of vortices to electromagnetic types with a start point from known fluid systems. From this, properties of gravity-generating objects (particles and black holes) can be derived, which can also describe their possible interior. This also leads to questions about stability, which are then addressed and ultimately lead to considerations of black holes and their possible internal structure. The results fit into the observable areas and can also be directly verified because they were analytically calculated in SI units.展开更多
The pictures from the James Webb Space Telescope (JWST) suggest that massive galaxies were already at the beginning of the expansion of the Universe because there was too short time to create them. It is consistent wi...The pictures from the James Webb Space Telescope (JWST) suggest that massive galaxies were already at the beginning of the expansion of the Universe because there was too short time to create them. It is consistent with the new cosmology presented within the Scale-Symmetric Theory (SST). The phase transitions of the initial inflation field described in SST lead to the Protoworld—its core was built of dark matter (DM). We show that the DAMA/LIBRA annual-modulation amplitude forced by the change of the Earth’s velocity (i.e. baryonic-matter (BM) velocity) in relation to the spinning DM field in our Galaxy’s halo should be very low. We calculated that in the DM-BM weak interactions are created single and entangled spacetime condensates with a lowest mass/energy of 0.807 keV—as the Higgs boson they can decay to two photons, so we can indirectly detect DM. Our results are consistent with the averaged DAMA/LIBRA/COSINE-100 curve describing the dependence of the event rate on the photon energy in single-hit events. We calculated the mean dark-matter-halo (DMH) mass around quasars, we also described the origin of the plateaux in the rotation curves for the massive spiral galaxies, the role of DM-loops in magnetars, the origin of CMB, the AGN-jet and galactic-halo production, and properties of dark energy (DE).展开更多
The high energy cosmic-radiation detection(HERD)facility is planned to launch in 2027 and scheduled to be installed on the China Space Station.It serves as a dark matter particle detector,a cosmic ray instrument,and a...The high energy cosmic-radiation detection(HERD)facility is planned to launch in 2027 and scheduled to be installed on the China Space Station.It serves as a dark matter particle detector,a cosmic ray instrument,and an observatory for high-energy gamma rays.A transition radiation detector placed on one of its lateral sides serves dual purpose,(ⅰ)calibrating HERD's electromagnetic calorimeter in the TeV energy range,and(ⅱ)serving as an independent detector for high-energy gamma rays.In this paper,the prototype readout electronics design of the transition radiation detector is demonstrated,which aims to accurately measure the charge of the anodes using the SAMPA application specific integrated circuit chip.The electronic performance of the prototype system is evaluated in terms of noise,linearity,and resolution.Through the presented design,each electronic channel can achieve a dynamic range of 0–100 fC,the RMS noise level not exceeding 0.15 fC,and the integral nonlinearity was<0.2%.To further verify the readout electronic performance,a joint test with the detector was carried out,and the results show that the prototype system can satisfy the requirements of the detector's scientific goals.展开更多
Olbers’s paradox, known as the dark night paradox, is an argument in astrophysics that the darkness of the night sky conflicts with the assumption of an infinite and eternal static universe. Big-Bang theory was used ...Olbers’s paradox, known as the dark night paradox, is an argument in astrophysics that the darkness of the night sky conflicts with the assumption of an infinite and eternal static universe. Big-Bang theory was used to partially explain this paradox, while introducing new problems. Hereby, we propose a better theory, named Sun Matters Theory, to explain this paradox. Moreover, this unique theory supports and extended the Einstein’s static universe model proposed by Albert Einstein in 1917. Further, we proposed our new universe model, “Sun Model of Universe”. Based on the new model and novel theory, we generated innovative field equation by upgrading Einstein’s Field Equation through adding back the cosmological constant, introducing a new variable and modifying the gravitationally-related concepts. According to the Sun Model of Universe, the dark matter and dark energy comprise the so-called “Sun Matters”. The observed phenomenon like the red shift is explained as due to the interaction of ordinary light with Sun Matters leading to its energy and frequency decrease. In Sun Model, our big universe consists of many universes with ordinary matter at the core mixed and surrounded with the Sun Matters. In those universes, the laws of physics may be completely or partially different from that of our ordinary universe with parallel civilizations. The darkness of night can be easily explained as resulting from the interaction of light with the Sun Matters leading to the sharp decrease in the light intensity. Sun Matters also scatter the light from a star, which makes it shining as observed by Hubble. Further, there is a kind of Sun Matters named “Sun Waters”, surrounding every starts. When lights pass by the sun, the Sun Waters deflect the lights to bend the light path. According to the Sun Model, it is the light bent not the space bent that was proposed in the theory of relativities.展开更多
The development of InGaAs/InP single-photon avalanche photodiodes(SPADs)necessitates the utiliza-tion of a two-element diffusion technique to achieve accurate manipulation of the multiplication width and the dis-tribu...The development of InGaAs/InP single-photon avalanche photodiodes(SPADs)necessitates the utiliza-tion of a two-element diffusion technique to achieve accurate manipulation of the multiplication width and the dis-tribution of its electric field.Regarding the issue of accurately predicting the depth of diffusion in InGaAs/InP SPAD,simulation analysis and device development were carried out,focusing on the dual diffusion behavior of zinc atoms.A formula of X_(j)=k√t-t_(0)+c to quantitatively predict the diffusion depth is obtained by fitting the simulated twice-diffusion depths based on a two-dimensional(2D)model.The 2D impurity morphologies and the one-dimensional impurity profiles for the dual-diffused region are characterized by using scanning electron micros-copy and secondary ion mass spectrometry as a function of the diffusion depth,respectively.InGaAs/InP SPAD devices with different dual-diffusion conditions are also fabricated,which show breakdown behaviors well consis-tent with the simulated results under the same junction geometries.The dark count rate(DCR)of the device de-creased as the multiplication width increased,as indicated by the results.DCRs of 2×10^(6),1×10^(5),4×10^(4),and 2×10^(4) were achieved at temperatures of 300 K,273 K,263 K,and 253 K,respectively,with a bias voltage of 3 V,when the multiplication width was 1.5µm.These results demonstrate an effective prediction route for accu-rately controlling the dual-diffused zinc junction geometry in InP-based planar device processing.展开更多
In Part I of this paper, an inequality satisfied by the vacuum energy density of the universe was derived using an indirect and heuristic procedure. The derivation is based on a proposed thought experiment, according ...In Part I of this paper, an inequality satisfied by the vacuum energy density of the universe was derived using an indirect and heuristic procedure. The derivation is based on a proposed thought experiment, according to which an electron is accelerated to a constant and relativistic speed at a distance L from a perfectly conducting plane. The charge of the electron was represented by a spherical charge distribution located within the Compton wavelength of the electron. Subsequently, the electron is incident on the perfect conductor giving rise to transition radiation. The energy associated with the transition radiation depends on the parameter L. It was shown that an inequality satisfied by the vacuum energy density will emerge when the length L is pushed to cosmological dimensions and the product of the radiated energy, and the time duration of emission is constrained by Heisenberg’s uncertainty principle. In this paper, a similar analysis is conducted with a chain of electrons oscillating sinusoidally and located above a conducting plane. In the thought experiment presented in this paper, the behavior of the energy radiated by the chain of oscillating electrons is studied in the frequency domain as a function of the length L of the chain. It is shown that when the length L is pushed to cosmological dimensions and the energy radiated within a single burst of duration of half a period of oscillation is constrained by the fact that electromagnetic energy consists of photons, an inequality satisfied by the vacuum energy density emerges as a result. The derived inequality is given by where is the vacuum energy density. This result is consistent with the measured value of the vacuum energy density, which is 5.38 × 10<sup>-10</sup> J/m. The result obtained here is in better agreement with experimental data than the one obtained in Part I of this paper with time domain radiation.展开更多
This study presents results on detecting neutral atomic hydrogen(H I)21 cm absorption in the spectrum of PKS PKS1413+13 at redshift z=0.24670041.The observation was conducted by FAST,with a spectral resolution of10 Hz...This study presents results on detecting neutral atomic hydrogen(H I)21 cm absorption in the spectrum of PKS PKS1413+13 at redshift z=0.24670041.The observation was conducted by FAST,with a spectral resolution of10 Hz,using 10 minutes of observing time.The global spectral profile is examined by modeling the absorption line using a single Gaussian function with a resolution of 10 kHz within a 2 MHz bandwidth.The goal is to determine the rate of the latest cosmic acceleration by directly measuring the redshift evolution of the H I 21 cm absorption line with Hubble flow toward a common background quasar over a decade or longer time span.This will serve as a detectable signal generated by the accelerated expansion of the Universe at redshift z<1,referred to as redshift drift z(5)or the SL effect.The measured H I gas column density in this DLA system is approximately equivalent to the initial observation value,considering uncertainties of the spin temperature of a spiral host galaxy.The high signal-to-noise ratio of 57,obtained at a 10 kHz resolution,strongly supports the feasibility of using the H I 21 cm absorption line in DLA systems to accurately measure the redshift drift rate at a precision level of around 10~(-10)per decade.展开更多
In this paper,we upgrade the constraints for the Earth-mass primordial black hole mergers model based on the first Canadian Hydrogen Intensity Mapping Experiment(CHIME)/fast radio burst(FRB)catalog.Assuming the null h...In this paper,we upgrade the constraints for the Earth-mass primordial black hole mergers model based on the first Canadian Hydrogen Intensity Mapping Experiment(CHIME)/fast radio burst(FRB)catalog.Assuming the null hypothesis that the observed non-repeating FRBs originate from Earth-mass primordial black hole mergers,we find that how the charges were distributed in the primordial black hole population is well described by a double powerlaw function with typical charge value of law function with typical charge value of q_(c)/10^(-5)=1.60_(-0.28)^(+0.28),where the power-law index α_(1)=2.33_(-0.18)^(+0.15) for q<q_(c) and α_(2)=4.56_(-0.26)^(+0.30)for q≥q_(c).Here,q represents the charge of the black hole in units of√GM,where M is the mass of the black hole.Furthermore,we infer the local event rate of the bursts is 8.8_(-2.1)^(+5.7)×10^(4)Gpc^(-3) yr^(-1),which indicates that an abundance of the primordial black hole population f■10^(-4) is needed to account for the observed FRBs by CHIME.The results of this paper lay the basis for further research on the electromagnetic radiation background generated by the merger of primordial black hole mergers.展开更多
This study investigates the effects of displacement damage on the dark signal of a pinned photodiode CMOS image sensor(CIS)following irradiation with back-streaming white neutrons from white neutron sources at the Chi...This study investigates the effects of displacement damage on the dark signal of a pinned photodiode CMOS image sensor(CIS)following irradiation with back-streaming white neutrons from white neutron sources at the China spallation neutron source(CSNS)and Xi'an pulsed reactor(XAPR).The mean dark signal,dark signal non-uniformity(DSNU),dark signal distribution,and hot pixels of the CIS were compared between the CSNS back-n and XAPR neutron irradiations.The nonionizing energy loss and energy distribution of primary knock-on atoms in silicon,induced by neutrons,were calculated using the open-source package Geant4.An analysis combining experimental and simulation results showed a noticeable proportionality between the increase in the mean dark signal and the displacement damage dose(DDD).Additionally,neutron energies influence DSNU,dark signal distribution,and hot pixels.High neutron energies at the same DDD level may lead to pronounced dark signal non-uniformity and elevated hot pixel values.展开更多
A dark matter mechanism within the framework of the standard model (SM) of particle physics is proposed in this article that the essence of dark matter may be the excited virtual particle field by the gravitational fi...A dark matter mechanism within the framework of the standard model (SM) of particle physics is proposed in this article that the essence of dark matter may be the excited virtual particle field by the gravitational field of ordinary matter, which contains virtual photons, virtual positive and negative electron pairs, virtual gluons, virtual positive and negative quark pairs, virtual neutrinos etc. In this mechanism, there are two basic assumptions: 1) the stronger the gravitational field of ordinary matter, the greater the excited energy (mass) density of virtual particle field;2) The excited virtual particle field is generally very weak in self-interaction. The virtual particle field excited by gravity can exhibit the properties of dark matter and may become a dark matter candidate. Based on this new dark matter mechanism, the hydrodynamic equations and cosmic perturbation equations describing cosmic matter are improved, and this may be meaningful for solving the challenges faced by the standard cosmological model (Lambda-CDM or LCDM) and developing and perfecting LCDM model.展开更多
We summarize several measurements of the dark matter temperature-to-mass ratio, or equivalently, of the comoving root-mean-square thermal velocity of warm dark matter particles vhrms(1). The most reliable determinatio...We summarize several measurements of the dark matter temperature-to-mass ratio, or equivalently, of the comoving root-mean-square thermal velocity of warm dark matter particles vhrms(1). The most reliable determination of this parameter comes from well measured rotation curves of dwarf galaxies by the LITTLE THINGS collaboration: vhrms(1)=406±69 m/s. Complementary and consistent measurements are obtained from rotation curves of spiral galaxies measured by the SPARC collaboration, density runs of giant elliptical galaxies, galaxy ultra-violet luminosity distributions, galaxy stellar mass distributions, first galaxies, and reionization. Having measured vhrms(1), we then embark on a journey to the past that leads to a consistent set of measured dark matter properties, including mass, temperature and spin.展开更多
The purpose of this paper is to introduce new theoretical concepts as opposed to accepting the existence of dark entities, such as dark energy. This research sought to introduce a 2<sup>nd</sup> universal ...The purpose of this paper is to introduce new theoretical concepts as opposed to accepting the existence of dark entities, such as dark energy. This research sought to introduce a 2<sup>nd</sup> universal space-time constant, besides having a finite speed constant (speed of light in vacuum c). A finite universal age constant b is introduced. Namely, this paper shows that the changes in the Earth’s anomalistic year duration over time support the hypothesis of the age of the universe correlating with a maximum number of orbital revolutions constant. Neglecting the gravitational influence of other cosmological entities in the proximity of the Earth, the constant maximum number of revolutions is herewith determined solely by the Earth’s orbital revolutions around the Sun. The value of the universal age constant b is calculated to be around 13.8 billion orbital revolutions, derived out of an equation related to the changes in the Earth’s anomalistic year duration over time and the so-called Hubble tension. The above-mentioned calculated value b correlates well with the best fit to measured data of the cosmic microwave background radiation (CMBR) by the Planck spacecraft, the age of the observed universe is measured to be approximately 13.787 ± 0.020 billion years (2018 final data release). Developing a theory with this 2<sup>nd</sup> universal space-time constant b, being covariant with respect to the Lorentz transformations when time spans are large, gives results such as: A confirmation of the measured CMBR value of 13.787 ± 0.020 billion years. Correlating well with the observed expansion rate of the universe (dark energy). The universe’s expansion accelerating over the last four to five billion years.展开更多
This study aims to demonstrate a proof of concept for a novel theory of the universe based on the Fine Structure Constant (α), derived from n-dimensional prime number property sets, specifically α = 137 and α = 139...This study aims to demonstrate a proof of concept for a novel theory of the universe based on the Fine Structure Constant (α), derived from n-dimensional prime number property sets, specifically α = 137 and α = 139. The FSC Model introduces a new perspective on the fundamental nature of our universe, showing that α = 137.036 can be calculated from these prime property sets. The Fine Structure Constant, a cornerstone in Quantum Electrodynamics (QED) and Quantum Chromodynamics (QCD), implies an underlying structure. This study identifies this mathematical framework and demonstrates how the FSC model theory aligns with our current understanding of physics and cosmology. The results unveil a hierarchy of α values for twin prime pairs U{3/2} through U{199/197}. These values, represented by their fraction parts α♊ (e.g., 0.036), define the relative electromagnetic forces driving quantum energy systems. The lower twin prime pairs, such as U{3/2}, exhibit higher EM forces that decrease as the twin pairs increase, turning dark when they drop below the α♊ for light. The results provide classical definitions for Baryonic Matter/Energy, Dark Matter, Dark Energy, and Antimatter but mostly illustrate how the combined α♊ values for three adjacent twin primes, U{7/5/3/2} mirrors the strong nuclear force of gluons holding quarks together.展开更多
A complementarity hypothesis concerning outsider and insider perspectives of a gargantuan black hole is proposed. The two thought experiments presented herein are followed by a brief discussion of a new interpretation...A complementarity hypothesis concerning outsider and insider perspectives of a gargantuan black hole is proposed. The two thought experiments presented herein are followed by a brief discussion of a new interpretation of black hole interior “space-and-time-reversal”. Specifically, it is proposed that the “singularity” space of the black hole interior is time-like and the expansion time of the black hole interior is space-like. The resemblance of this new insider interpretation to our own expanding and redshifting big bang universe is compelling.展开更多
Supermassive DEOs (SMDEOs) are cosmologically evolved objects made of irreducible incompressible supranuclear dense superfluids: The state we consider to govern the matter inside the cores of massive neutron stars. Th...Supermassive DEOs (SMDEOs) are cosmologically evolved objects made of irreducible incompressible supranuclear dense superfluids: The state we consider to govern the matter inside the cores of massive neutron stars. These cores are practically trapped in false vacua, rendering their detection by outside observers impossible. Based on massive parallel computations and theoretical investigations, we show that SMDEOs at the centres of spiral galaxies that are surrounded by massive rotating torii of normal matter may serve as powerful sources for gravitational waves carrying away roughly 1042 erg/s. Due to the extensive cooling by GWs, the SMDEO-Torus systems undergo glitching, through which both rotational and gravitational energies are abruptly ejected into the ambient media, during which the topologies of the embedding spacetimes change from curved into flatter ones, thereby triggering a burst gravitational energy of order 1059 erg. Also, the effects of glitches found to alter the force balance of objects in the Lagrangian-L1 region between the central SMDEO-Torus system and the bulge, enforcing the enclosed objects to develop violent motions, that may explain the origin of the rotational curve irregularities observed in the innermost part of spiral galaxies. Our study shows that the generated GWs at the centres of galaxies, which traverse billions of objects during their outward propagations throughout the entire galaxy, lose energy due to repeatedly squeezing and stretching the objects. Here, we find that these interactions may serve as damping processes that give rise to the formation of collective forces f∝m(r)/r, that point outward, endowing the objects with the observed flat rotation curves. Our approach predicts a correlation between the baryonic mass and the rotation velocities in galaxies, which is in line with the Tully-Fisher relation. The here-presented self-consistent approach explains nicely the observed rotation curves without invoking dark matter or modifying Newtonian gravitation in the low-field approximation.展开更多
文摘This paper develops the Dark Matter by Quantum Gravitation theory, DMbQG theory hereafter, in clusters of galaxies in the cosmologic model ΛCDM of the Universe. Originally this theory was developed by the author for galaxies, especially using MW and M31 rotation curves. An important result got by the DMbQG theory is that the total mass associated to a galactic halo depend on the square root of radius, being its dominion unbounded. Apparently, this result would be absurd because of divergence of the total mass. As the DE is negligible at galactic scale, it is needed to extend the theory to clusters in order to study the capacity of DE to counterbalance to DM. Thanks this property, the DMbQG theory finds unexpected theoretical results. In this work, it is defined, the total mass as baryonic matter plus DM and the gravitating mass as the addition of the total mass plus the negative mass associated to dark energy. In clusters it is defined the zero gravity radius (RZG hereafter) as the radius needed by the dark energy to counterbalance the total mass. It has been found that the ratio RZG/RVIRIAL ≈ 7.3 and its Total mass associated at RZG is ≈2.7 MVIRIAL. In addition, it has been calculated that the sphere with the extended halo radius RE = 1.85 RZG has a ratio DM density versus DE density equal to 3/7 and its total mass associated at RE is ≈3.6 MVIRIAL. This works postulates that the factor 3.6 may equilibrate perfectly the strong imbalance between the Local mater density parameter (0.08) versus the current Global matter density one (0.3). Currently, this fact is a big conundrum in cosmology, see chapter 7. Also it has been found that the zero velocity radius, RZV hereafter, i.e. the cluster border because of the Hubble flow, is ≈0.6 RZG and its gravitating mass is ≈ 1.5 MVIR. By derivation of gravitating mass function, it is calculated that at 0.49 RZG, this function reaches its maximum whose value is ≈1.57 MVIR. Throughout the paper, some of these results have been validated with recent data published for the Virgo cluster. As Virgo is the nearest big cluster, it is the perfect benchmark to validate any new theory about DM and DE. These new theoretical findings offer to scientific community a wide number of tests to validate or reject the theory. The validation of DMbQG theory would mean to know the nature of DM that at the present, it is an important challenge for the astrophysics science.
文摘Mass plays a role in many physical phenomena, including the behavior of subatomic particles, the formation and behavior of stars and galaxies, and gravitational interactions between objects. The density of vacuum, 9.5 × 10−27 kg/m3, is a crucial parameter in the theory of cosmic inflation and is responsible for the accelerated expansion of the universe in its early stages. This vacuum energy interacts with matter and manifests itself as mass, which can be described as flow and vortex formation using the laws of hydrodynamics. The vortex model of elementary particles, in conjunction with the laws of hydrodynamics, provides an elegant explanation for the origin of mass and the relationship between mass and energy, with profound implications for the behavior of objects at high velocities and strong gravitational fields. The vacuum behaves as a compressible superfluid, thus elementary particles can be described as vortices of the vacuum. The equations of hydrodynamics for vortices can be applied to describe the nature and value of the mass of particles. The implications of understanding the nature of mass are vast and profound. From elucidating the fundamental properties of particles to informing the design of advanced materials and technologies, this knowledge is indispensable. It drives advancements across numerous fields, transforming both our theoretical understanding and practical capabilities. Continued research into the nature of mass promises to unlock further insights, fostering innovation and expanding the frontiers of science and technology.
文摘In this paper, we discuss a Many Worlds Interpretation (MWI) of Dark Energy and Dark Matter. The universe is viewed cosmologically as a fermionic fluid with a hydrostatic pressure from “Zitterbewegung”, the quantum “zig-zagging” of Dirac particles. At each point in space-time, the pressure from all possible velocity states existing in the Many Worlds sums to provide a dark energy. This provides a ratio of matter energy to pressure energy close to that observed experimentally. Visible matter is the matter observed or measured in a particular velocity state and dark matter is then considered as the unobserved fermion contributions from different orthogonal spatial directions.
基金supported by the National Key Research and Development Program of China(No.2022YFF0503304)the National Natural Science Foundation of China(No.12133003)and Guangxi Science Foundation(No.2019AC20334)。
文摘Dwarf irregular galaxies(dIrrs),as rotationally supported systems,have more reliable J-factor measurements than dwarf spheroidal galaxies and have received attention as targets for dark matter detection in recent years.In this paper,we use 10 yr of IceCube muon-track data and an unbinned maximum-likelihood-ratio method to search for neutrino signals beyond the background from the directions of seven dIrrs,aiming to detect neutrinos produced by heavy annihilation dark matter.We do not detect any significant signal.Based on such null results,we calculate the upper limits on the velocity-averaged annihilation cross section for 1 TeV–10 PeV dark matter.Our limits,although weaker than the strictest constraints in the literature in this mass range,are also a good complement to the existing results considering the more reliable J-factor measurements of dIrrs.
文摘The Theory of General Singularity is presented, unifying quantum field theory, general relativity, and the standard model. This theory posits phonons as fundamental excitations in a quantum vacuum, modeled as a Bose-Einstein condensate. Through key equations, the role of phonons as intermediaries between matter, energy, and spacetime geometry is demonstrated. The theory expands Einsteins field equations to differentiate between visible and dark matter, and revises the standard model by incorporating phonons. It addresses dark matter, dark energy, gravity, and phase transitions, while making testable predictions. The theory proposes that singularities, the essence of particles and black holes, are quantum entities ubiquitous in nature, constituting the very essence of elementary particles, seen as micro black holes or quantum fractal structures of spacetime. As the theory is refined with increasing mathematical rigor, it builds upon the foundation of initial physical intuition, connecting the spacetime continuum of general relativity with the hydrodynamics of the quantum vacuum. Inspired by the insights of Tesla and Majorana, who believed that physical intuition justifies the infringement of mathematical rigor in the early stages of theory development, this work aims to advance the understanding of the fundamental laws of the universe and the perception of reality.
文摘This article describes an extension of the theory of vortices to electromagnetic types with a start point from known fluid systems. From this, properties of gravity-generating objects (particles and black holes) can be derived, which can also describe their possible interior. This also leads to questions about stability, which are then addressed and ultimately lead to considerations of black holes and their possible internal structure. The results fit into the observable areas and can also be directly verified because they were analytically calculated in SI units.
文摘The pictures from the James Webb Space Telescope (JWST) suggest that massive galaxies were already at the beginning of the expansion of the Universe because there was too short time to create them. It is consistent with the new cosmology presented within the Scale-Symmetric Theory (SST). The phase transitions of the initial inflation field described in SST lead to the Protoworld—its core was built of dark matter (DM). We show that the DAMA/LIBRA annual-modulation amplitude forced by the change of the Earth’s velocity (i.e. baryonic-matter (BM) velocity) in relation to the spinning DM field in our Galaxy’s halo should be very low. We calculated that in the DM-BM weak interactions are created single and entangled spacetime condensates with a lowest mass/energy of 0.807 keV—as the Higgs boson they can decay to two photons, so we can indirectly detect DM. Our results are consistent with the averaged DAMA/LIBRA/COSINE-100 curve describing the dependence of the event rate on the photon energy in single-hit events. We calculated the mean dark-matter-halo (DMH) mass around quasars, we also described the origin of the plateaux in the rotation curves for the massive spiral galaxies, the role of DM-loops in magnetars, the origin of CMB, the AGN-jet and galactic-halo production, and properties of dark energy (DE).
基金supported by the National Natural Science Foundation of China(Nos.12375193,11975292,11875304)the CAS“Light of West China”Program+1 种基金the Scientific Instrument Developing Project of the Chinese Academy of Sciences(No.GJJSTD20210009)the CAS Pioneer Hundred Talent Program。
文摘The high energy cosmic-radiation detection(HERD)facility is planned to launch in 2027 and scheduled to be installed on the China Space Station.It serves as a dark matter particle detector,a cosmic ray instrument,and an observatory for high-energy gamma rays.A transition radiation detector placed on one of its lateral sides serves dual purpose,(ⅰ)calibrating HERD's electromagnetic calorimeter in the TeV energy range,and(ⅱ)serving as an independent detector for high-energy gamma rays.In this paper,the prototype readout electronics design of the transition radiation detector is demonstrated,which aims to accurately measure the charge of the anodes using the SAMPA application specific integrated circuit chip.The electronic performance of the prototype system is evaluated in terms of noise,linearity,and resolution.Through the presented design,each electronic channel can achieve a dynamic range of 0–100 fC,the RMS noise level not exceeding 0.15 fC,and the integral nonlinearity was<0.2%.To further verify the readout electronic performance,a joint test with the detector was carried out,and the results show that the prototype system can satisfy the requirements of the detector's scientific goals.
文摘Olbers’s paradox, known as the dark night paradox, is an argument in astrophysics that the darkness of the night sky conflicts with the assumption of an infinite and eternal static universe. Big-Bang theory was used to partially explain this paradox, while introducing new problems. Hereby, we propose a better theory, named Sun Matters Theory, to explain this paradox. Moreover, this unique theory supports and extended the Einstein’s static universe model proposed by Albert Einstein in 1917. Further, we proposed our new universe model, “Sun Model of Universe”. Based on the new model and novel theory, we generated innovative field equation by upgrading Einstein’s Field Equation through adding back the cosmological constant, introducing a new variable and modifying the gravitationally-related concepts. According to the Sun Model of Universe, the dark matter and dark energy comprise the so-called “Sun Matters”. The observed phenomenon like the red shift is explained as due to the interaction of ordinary light with Sun Matters leading to its energy and frequency decrease. In Sun Model, our big universe consists of many universes with ordinary matter at the core mixed and surrounded with the Sun Matters. In those universes, the laws of physics may be completely or partially different from that of our ordinary universe with parallel civilizations. The darkness of night can be easily explained as resulting from the interaction of light with the Sun Matters leading to the sharp decrease in the light intensity. Sun Matters also scatter the light from a star, which makes it shining as observed by Hubble. Further, there is a kind of Sun Matters named “Sun Waters”, surrounding every starts. When lights pass by the sun, the Sun Waters deflect the lights to bend the light path. According to the Sun Model, it is the light bent not the space bent that was proposed in the theory of relativities.
基金Supported by Shanghai Natural Science Foundation(22ZR1472600).
文摘The development of InGaAs/InP single-photon avalanche photodiodes(SPADs)necessitates the utiliza-tion of a two-element diffusion technique to achieve accurate manipulation of the multiplication width and the dis-tribution of its electric field.Regarding the issue of accurately predicting the depth of diffusion in InGaAs/InP SPAD,simulation analysis and device development were carried out,focusing on the dual diffusion behavior of zinc atoms.A formula of X_(j)=k√t-t_(0)+c to quantitatively predict the diffusion depth is obtained by fitting the simulated twice-diffusion depths based on a two-dimensional(2D)model.The 2D impurity morphologies and the one-dimensional impurity profiles for the dual-diffused region are characterized by using scanning electron micros-copy and secondary ion mass spectrometry as a function of the diffusion depth,respectively.InGaAs/InP SPAD devices with different dual-diffusion conditions are also fabricated,which show breakdown behaviors well consis-tent with the simulated results under the same junction geometries.The dark count rate(DCR)of the device de-creased as the multiplication width increased,as indicated by the results.DCRs of 2×10^(6),1×10^(5),4×10^(4),and 2×10^(4) were achieved at temperatures of 300 K,273 K,263 K,and 253 K,respectively,with a bias voltage of 3 V,when the multiplication width was 1.5µm.These results demonstrate an effective prediction route for accu-rately controlling the dual-diffused zinc junction geometry in InP-based planar device processing.
文摘In Part I of this paper, an inequality satisfied by the vacuum energy density of the universe was derived using an indirect and heuristic procedure. The derivation is based on a proposed thought experiment, according to which an electron is accelerated to a constant and relativistic speed at a distance L from a perfectly conducting plane. The charge of the electron was represented by a spherical charge distribution located within the Compton wavelength of the electron. Subsequently, the electron is incident on the perfect conductor giving rise to transition radiation. The energy associated with the transition radiation depends on the parameter L. It was shown that an inequality satisfied by the vacuum energy density will emerge when the length L is pushed to cosmological dimensions and the product of the radiated energy, and the time duration of emission is constrained by Heisenberg’s uncertainty principle. In this paper, a similar analysis is conducted with a chain of electrons oscillating sinusoidally and located above a conducting plane. In the thought experiment presented in this paper, the behavior of the energy radiated by the chain of oscillating electrons is studied in the frequency domain as a function of the length L of the chain. It is shown that when the length L is pushed to cosmological dimensions and the energy radiated within a single burst of duration of half a period of oscillation is constrained by the fact that electromagnetic energy consists of photons, an inequality satisfied by the vacuum energy density emerges as a result. The derived inequality is given by where is the vacuum energy density. This result is consistent with the measured value of the vacuum energy density, which is 5.38 × 10<sup>-10</sup> J/m. The result obtained here is in better agreement with experimental data than the one obtained in Part I of this paper with time domain radiation.
基金supported by the National SKA Program of China(2022SKA0110202)the National Natural Science Foundation of China(grants No.11929301)。
文摘This study presents results on detecting neutral atomic hydrogen(H I)21 cm absorption in the spectrum of PKS PKS1413+13 at redshift z=0.24670041.The observation was conducted by FAST,with a spectral resolution of10 Hz,using 10 minutes of observing time.The global spectral profile is examined by modeling the absorption line using a single Gaussian function with a resolution of 10 kHz within a 2 MHz bandwidth.The goal is to determine the rate of the latest cosmic acceleration by directly measuring the redshift evolution of the H I 21 cm absorption line with Hubble flow toward a common background quasar over a decade or longer time span.This will serve as a detectable signal generated by the accelerated expansion of the Universe at redshift z<1,referred to as redshift drift z(5)or the SL effect.The measured H I gas column density in this DLA system is approximately equivalent to the initial observation value,considering uncertainties of the spin temperature of a spiral host galaxy.The high signal-to-noise ratio of 57,obtained at a 10 kHz resolution,strongly supports the feasibility of using the H I 21 cm absorption line in DLA systems to accurately measure the redshift drift rate at a precision level of around 10~(-10)per decade.
基金supported by the National Natural Science Foundation of China(NSFC,Grant No.12203013)the Guangxi Science Foundation(grant Nos.2023GXNSFBA026030and Guike AD22035171)。
文摘In this paper,we upgrade the constraints for the Earth-mass primordial black hole mergers model based on the first Canadian Hydrogen Intensity Mapping Experiment(CHIME)/fast radio burst(FRB)catalog.Assuming the null hypothesis that the observed non-repeating FRBs originate from Earth-mass primordial black hole mergers,we find that how the charges were distributed in the primordial black hole population is well described by a double powerlaw function with typical charge value of law function with typical charge value of q_(c)/10^(-5)=1.60_(-0.28)^(+0.28),where the power-law index α_(1)=2.33_(-0.18)^(+0.15) for q<q_(c) and α_(2)=4.56_(-0.26)^(+0.30)for q≥q_(c).Here,q represents the charge of the black hole in units of√GM,where M is the mass of the black hole.Furthermore,we infer the local event rate of the bursts is 8.8_(-2.1)^(+5.7)×10^(4)Gpc^(-3) yr^(-1),which indicates that an abundance of the primordial black hole population f■10^(-4) is needed to account for the observed FRBs by CHIME.The results of this paper lay the basis for further research on the electromagnetic radiation background generated by the merger of primordial black hole mergers.
基金supported by the Young Elite Scientists Sponsorship Program by CAST(No.YESS20210441)the National Natural Science Foundation of China(Nos.U2167208,11875223)。
文摘This study investigates the effects of displacement damage on the dark signal of a pinned photodiode CMOS image sensor(CIS)following irradiation with back-streaming white neutrons from white neutron sources at the China spallation neutron source(CSNS)and Xi'an pulsed reactor(XAPR).The mean dark signal,dark signal non-uniformity(DSNU),dark signal distribution,and hot pixels of the CIS were compared between the CSNS back-n and XAPR neutron irradiations.The nonionizing energy loss and energy distribution of primary knock-on atoms in silicon,induced by neutrons,were calculated using the open-source package Geant4.An analysis combining experimental and simulation results showed a noticeable proportionality between the increase in the mean dark signal and the displacement damage dose(DDD).Additionally,neutron energies influence DSNU,dark signal distribution,and hot pixels.High neutron energies at the same DDD level may lead to pronounced dark signal non-uniformity and elevated hot pixel values.
文摘A dark matter mechanism within the framework of the standard model (SM) of particle physics is proposed in this article that the essence of dark matter may be the excited virtual particle field by the gravitational field of ordinary matter, which contains virtual photons, virtual positive and negative electron pairs, virtual gluons, virtual positive and negative quark pairs, virtual neutrinos etc. In this mechanism, there are two basic assumptions: 1) the stronger the gravitational field of ordinary matter, the greater the excited energy (mass) density of virtual particle field;2) The excited virtual particle field is generally very weak in self-interaction. The virtual particle field excited by gravity can exhibit the properties of dark matter and may become a dark matter candidate. Based on this new dark matter mechanism, the hydrodynamic equations and cosmic perturbation equations describing cosmic matter are improved, and this may be meaningful for solving the challenges faced by the standard cosmological model (Lambda-CDM or LCDM) and developing and perfecting LCDM model.
文摘We summarize several measurements of the dark matter temperature-to-mass ratio, or equivalently, of the comoving root-mean-square thermal velocity of warm dark matter particles vhrms(1). The most reliable determination of this parameter comes from well measured rotation curves of dwarf galaxies by the LITTLE THINGS collaboration: vhrms(1)=406±69 m/s. Complementary and consistent measurements are obtained from rotation curves of spiral galaxies measured by the SPARC collaboration, density runs of giant elliptical galaxies, galaxy ultra-violet luminosity distributions, galaxy stellar mass distributions, first galaxies, and reionization. Having measured vhrms(1), we then embark on a journey to the past that leads to a consistent set of measured dark matter properties, including mass, temperature and spin.
文摘The purpose of this paper is to introduce new theoretical concepts as opposed to accepting the existence of dark entities, such as dark energy. This research sought to introduce a 2<sup>nd</sup> universal space-time constant, besides having a finite speed constant (speed of light in vacuum c). A finite universal age constant b is introduced. Namely, this paper shows that the changes in the Earth’s anomalistic year duration over time support the hypothesis of the age of the universe correlating with a maximum number of orbital revolutions constant. Neglecting the gravitational influence of other cosmological entities in the proximity of the Earth, the constant maximum number of revolutions is herewith determined solely by the Earth’s orbital revolutions around the Sun. The value of the universal age constant b is calculated to be around 13.8 billion orbital revolutions, derived out of an equation related to the changes in the Earth’s anomalistic year duration over time and the so-called Hubble tension. The above-mentioned calculated value b correlates well with the best fit to measured data of the cosmic microwave background radiation (CMBR) by the Planck spacecraft, the age of the observed universe is measured to be approximately 13.787 ± 0.020 billion years (2018 final data release). Developing a theory with this 2<sup>nd</sup> universal space-time constant b, being covariant with respect to the Lorentz transformations when time spans are large, gives results such as: A confirmation of the measured CMBR value of 13.787 ± 0.020 billion years. Correlating well with the observed expansion rate of the universe (dark energy). The universe’s expansion accelerating over the last four to five billion years.
文摘This study aims to demonstrate a proof of concept for a novel theory of the universe based on the Fine Structure Constant (α), derived from n-dimensional prime number property sets, specifically α = 137 and α = 139. The FSC Model introduces a new perspective on the fundamental nature of our universe, showing that α = 137.036 can be calculated from these prime property sets. The Fine Structure Constant, a cornerstone in Quantum Electrodynamics (QED) and Quantum Chromodynamics (QCD), implies an underlying structure. This study identifies this mathematical framework and demonstrates how the FSC model theory aligns with our current understanding of physics and cosmology. The results unveil a hierarchy of α values for twin prime pairs U{3/2} through U{199/197}. These values, represented by their fraction parts α♊ (e.g., 0.036), define the relative electromagnetic forces driving quantum energy systems. The lower twin prime pairs, such as U{3/2}, exhibit higher EM forces that decrease as the twin pairs increase, turning dark when they drop below the α♊ for light. The results provide classical definitions for Baryonic Matter/Energy, Dark Matter, Dark Energy, and Antimatter but mostly illustrate how the combined α♊ values for three adjacent twin primes, U{7/5/3/2} mirrors the strong nuclear force of gluons holding quarks together.
文摘A complementarity hypothesis concerning outsider and insider perspectives of a gargantuan black hole is proposed. The two thought experiments presented herein are followed by a brief discussion of a new interpretation of black hole interior “space-and-time-reversal”. Specifically, it is proposed that the “singularity” space of the black hole interior is time-like and the expansion time of the black hole interior is space-like. The resemblance of this new insider interpretation to our own expanding and redshifting big bang universe is compelling.
文摘Supermassive DEOs (SMDEOs) are cosmologically evolved objects made of irreducible incompressible supranuclear dense superfluids: The state we consider to govern the matter inside the cores of massive neutron stars. These cores are practically trapped in false vacua, rendering their detection by outside observers impossible. Based on massive parallel computations and theoretical investigations, we show that SMDEOs at the centres of spiral galaxies that are surrounded by massive rotating torii of normal matter may serve as powerful sources for gravitational waves carrying away roughly 1042 erg/s. Due to the extensive cooling by GWs, the SMDEO-Torus systems undergo glitching, through which both rotational and gravitational energies are abruptly ejected into the ambient media, during which the topologies of the embedding spacetimes change from curved into flatter ones, thereby triggering a burst gravitational energy of order 1059 erg. Also, the effects of glitches found to alter the force balance of objects in the Lagrangian-L1 region between the central SMDEO-Torus system and the bulge, enforcing the enclosed objects to develop violent motions, that may explain the origin of the rotational curve irregularities observed in the innermost part of spiral galaxies. Our study shows that the generated GWs at the centres of galaxies, which traverse billions of objects during their outward propagations throughout the entire galaxy, lose energy due to repeatedly squeezing and stretching the objects. Here, we find that these interactions may serve as damping processes that give rise to the formation of collective forces f∝m(r)/r, that point outward, endowing the objects with the observed flat rotation curves. Our approach predicts a correlation between the baryonic mass and the rotation velocities in galaxies, which is in line with the Tully-Fisher relation. The here-presented self-consistent approach explains nicely the observed rotation curves without invoking dark matter or modifying Newtonian gravitation in the low-field approximation.