In order to obtain genetic information for grain yield, seven genetically diverse wheat cultivars were crossed in an incomplete diallel to study the inheritance of grain yield using F_2 progenies for two years. Signif...In order to obtain genetic information for grain yield, seven genetically diverse wheat cultivars were crossed in an incomplete diallel to study the inheritance of grain yield using F_2 progenies for two years. Significant differences were observed among genotype, year and genotype × year interaction for grain yield, and both general combining ability(GCA) and specific combining ability(SCA) were also highly significant for grain yield, suggesting that the trait was controlled by both additive and non-additive effect. The GCA estimates revealed that the best combiners for grain yield were Yangmai 5 and Ningmai 9. Adequacy tests revealed that data of grain yield was fully adequate for genetic interpretation. Over-dominance genetic effects were important for the expression of grain yield. Grain yield exhibited moderately high value of narrow sense heritability(h_N^2=66.98% and h_N^2=72.37%).展开更多
Identifying stable quantitative trait loci(QTLs)for yield-related traits across populations and environments is crucial for wheat breeding and genetic studies.Consensus maps also play important roles in wheat genetic ...Identifying stable quantitative trait loci(QTLs)for yield-related traits across populations and environments is crucial for wheat breeding and genetic studies.Consensus maps also play important roles in wheat genetic and genomic research.In the present study,a wheat consensus map was constructed using a doubled haploid(DH)population derived from Jinghua 1×Xiaobaidongmai(JX),an F_(2)population derived from L43×Shanxibaimai(LS)and the BAAFS Wheat 90K SNP array single nucleotide polymorphism(SNP)array.A total of 44,503 SNP markers were mapped on the constructed consensus map,and they covered 5,437.92 cM across 21 chromosomes.The consensus map showed high collinearity with the individual maps and the wheat reference genome IWGSC RefSeq v2.1.Phenotypic data on eight yield-related traits were collected in the JX population,as well as the F_(2:3)and F_(2:4)populations of LS,in six,two and two environments,respectively,and those data were used for QTL analysis.Inclusive composite interval mapping(ICIM)identified 32 environmentally stable QTLs for the eight yield-related traits.Among them,four QTLs(QPH.baafs-4B,QKNS.baafs-4B,QTGW.baafs-4B,and QSL.baafs-5A.3)were detected across mapping populations and environments,and nine stable QTLs(qKL.baafs-1D,QPH.baafs-2B,QKNS.baafs-3D,QSL.baafs-3D,QKW.baafs-4B,QPH.baafs-5D,QPH.baafs-6A.1,QSL.baafs-6A,and QSL.baafs-6D)are likely to be new.The physical region of 17.25–44.91 Mb on chromosome 4B was associated with six yield-related traits,so it is an important region for wheat yield.The physical region around the dwarfing gene Rht24 contained QTLs for kernel length(KL),kernel width(KW),spike length(SL),and thousand-grain weight(TGW),which are either from a pleiotropic effect of Rht24 or closely linked loci.For the stable QTLs,254 promising candidate genes were identified.Among them,TraesCS5A03G1264300,TraesCS1B03G0624000 and TraesCS6A03G0697000 are particularly noteworthy since their homologous genes have similar functions for the corresponding traits.The constructed consensus map and the identified QTLs along with their candidate genes will facilitate the genetic dissection of wheat yield-related traits and accelerate the development of wheat cultivars with desirable plant morphology and high yield.展开更多
[Objective]The study aimed to map QTLs(Quantitative trait loci)of heading stage for phtopeiod-thermo sensitive male sterile line BS366 in wheat.[Method] A population of 234 doubled haploid derived from the cross bet...[Objective]The study aimed to map QTLs(Quantitative trait loci)of heading stage for phtopeiod-thermo sensitive male sterile line BS366 in wheat.[Method] A population of 234 doubled haploid derived from the cross between BS366 and Baiyu149 was planted in Beijing and Funan in 2007,respectively.We used composite interval mapping(CIM)method to analyse the QTLs for heading stage.[Result]We detected 15 QTLs for heading stage.8 QTLs were detected in both Beijing and Funan,which were located on 1B,2A,2D,3B(2 loci),6B(2 loci)and 7B.A single QTL accounted for 2.42%-10.98% of pheotypic varience.[Conclusion] Eight QTLs which were detected under two environments could be applied for marker-assisted breeding and improvement of BS366.The QTL on chromosome 1B was new for heading stage,which enriches the QTL resource.展开更多
Effects of four culture media including MS, N6, C17 and K on wheat anther callus induction in vitro culture were studied. The results showed that the callus in- duction rate of four kinds of culture medium was in the ...Effects of four culture media including MS, N6, C17 and K on wheat anther callus induction in vitro culture were studied. The results showed that the callus in- duction rate of four kinds of culture medium was in the order of K〉C17〉N6〉MS.展开更多
Analysis of the gene expression differentiation in leaves of wheat (Triticum aestivum L.) cultivar Baofeng 7228, under salt stress, was carried out by Differential-Display Reverse Transcription-polymerase Chain Reac...Analysis of the gene expression differentiation in leaves of wheat (Triticum aestivum L.) cultivar Baofeng 7228, under salt stress, was carried out by Differential-Display Reverse Transcription-polymerase Chain Reaction (DDRT-PCR.) Twenty-seven differential cDNA fragments were obtained. The expression of the SR07 fragment was induced noticeably by salt treatment, and the nucleotide sequence homology of 87% between the SR07 fragment and PIPs (water channel proteins) was observed. Further research showed that a 561 bp open read frame was present in the SR07 fragment. Plant expression vector of pCAMBIA-SR07 was constructed and three transformants of tobacco (Nicotiana tobacum) mediated by Agrobacterium tumefaciens plasmid were obtained. Resistance to salt, PEG, and mannitol stresses of the three transformants were examined. No significant difference (P 〉 0.05) was observed between the control and the transformants in resistance to salt stress, but there was significant difference (P 〈 0.05) between the control and the transformants in resistance to PEG and mannitol stresses. Therefore, the expression of the SR07 fragment may play an important role in the water regulation of the plant.展开更多
[Objective] The aim of this study was to determine the variation of phytic acid content (PAC) and its frequency distribution, as well as the relationship between PAC and protein content, kernel characteristics in 16...[Objective] The aim of this study was to determine the variation of phytic acid content (PAC) and its frequency distribution, as well as the relationship between PAC and protein content, kernel characteristics in 161 Chinese winter wheat cultivars from four regions. [Method] One hundred and sixty-one winter wheat varieties from China Wheat Zones I, II, III and IV (Table 1) were grown in a randomized block de- sign, in the 2009-2011 cropping season; and then the indexes for describing the grain morphological characteristics such as the thousand kernel weight (TKW), kernel length (KL), kernel width (KW) and kernel thickness (KT) were measured; the phytic acid content (PAC), protein content and sedimentation value were also determined; finally, the relationship between PAC and protein content, kernel characteristics were analyzed. [Result] The PAC in the cultivars tested ranged from 0.92% to 1.95% with a mean value of 1.41%. Protein content ranged from 12.60% to 19.20%, with a mean of 15.24%. Most (53.4%) of the wheat genotypes had a PAC value in the range of 1.25% to 1.55%. No significant correlation was found between PAC and protein content, sedimentation value, while protein content and SDS sedimentation value was significant correlated, which suggested the possibility of breeding wheat cultivars that have a low PAC but a high protein content and good gluten quality. There was a high correlation between TKW and KW (,.=0.79), KL (r=0.50) and KT (r=0.64). PAC was found having no significant correlation with TKW, KW, KL and KT. [Conclusion] The result suggests the possibility of breeding wheat cultivars that have a low PAC but high kernel weight.展开更多
Wheat ( Triticum aestivum L.) plants were grown under ambient and doubled_CO 2(plus 350 μL/L) concentration in cylindrical open_top chamber to examine their effects on the ultrastructure, supramolecular architect...Wheat ( Triticum aestivum L.) plants were grown under ambient and doubled_CO 2(plus 350 μL/L) concentration in cylindrical open_top chamber to examine their effects on the ultrastructure, supramolecular architecture, absorption spectrum and low temperature (77 K) fluorescence emission spectrum of the chloroplasts from wheat leaves. The results were briefly summarized as follows: (1) The wheat leaves possessed normally developed chloroplasts with intact grana and stroma thylakoid membranes; The grana intertwined with stroma thylakoid membranes and increased slightly in stacking degree and the width of granum, in spite of more accumulated starch grains within the chloroplasts than those in control; (2) The particle density in the stacked region of the endoplasmic fracture face (EFs) and protoplasmic fracture face (PFs) and in the unstacked region the endoplasmic fracture face (EFu) and the protoplasmic fracture face (PFu) was significantly higher than that of control. Furthermore, in some cases many more particles on EFs faces of thylakoid membranes appeared as a paracrystalline particle array; (3) The variations in the structure of chloroplasts were consistent with the absorption spectra and the low temperature (77 K) fluorescence emission spectra of the chloroplasts developed under the doubled_CO 2 concentration. Results indicate that the capability of light energy absorption of chloroplasts and regulative capability of excitation energy distribution between PSⅡ and PSⅠ were raised by doubled_CO 2 concentration. This is very favorable for final productivity of wheat.展开更多
A brief review on the development of wheat germplasm with introduced powdery mildew and scab resistance from Haynaldia villosa Sch. and Leymus racemosus Lam., Roegneria ciliaris (Trin.) Nevski as well as R. kamoji C. ...A brief review on the development of wheat germplasm with introduced powdery mildew and scab resistance from Haynaldia villosa Sch. and Leymus racemosus Lam., Roegneria ciliaris (Trin.) Nevski as well as R. kamoji C. Koch respectively was made. In the course of germplasm development, genome analysis by means of chromosome banding, genomic in situ hybridization (GISH) or fluorescence in situ hybridization (FISH), molecular markers, particularly restriction fragment length polymorphism (RFLP) coupled with aneuploid analysis was employed for the purpose of improving breeding efficiency. Potential use of such germplasm in wheat breeding practice, basic studies and some related problems were also discussed.展开更多
Studies were carried out to establish an efficient regeneration system of three bread wheat cultivars. Results showed induction medium containing 2,4-dichlorophenoxyacetic acid (2,4-D) had a higher plantlet regenerati...Studies were carried out to establish an efficient regeneration system of three bread wheat cultivars. Results showed induction medium containing 2,4-dichlorophenoxyacetic acid (2,4-D) had a higher plantlet regeneration frequency than Piclorm, with an average frequency of 54% in all treatments. Optimal condition for different genotypic rice was as following: induction medium (MSS 3AA/2) with 0.5 mg L-1 2,4-D, regeneration medium (R) with 0.01 mg L-1 2,4-D and 3 mg L-1 KT. The average regeneration frequency reached 83.3% under the condition. Correlation analysis showed that root differentiation, in different level, correlated with green spot regeneration, and with the number of regenerated plants per callus. No correlation was found between green spots regenerated and the numbers of plants regenerated per callus.展开更多
Wheat biomass can be estimated using appropriate spectral vegetation indices.However,the accuracy of estimation should be further improved for on-farm crop management.Previous studies focused on developing vegetation ...Wheat biomass can be estimated using appropriate spectral vegetation indices.However,the accuracy of estimation should be further improved for on-farm crop management.Previous studies focused on developing vegetation indices,however limited research exists on modeling algorithms.The emerging Random Forest(RF) machine-learning algorithm is regarded as one of the most precise prediction methods for regression modeling.The objectives of this study were to(1) investigate the applicability of the RF regression algorithm for remotely estimating wheat biomass,(2) test the performance of the RF regression model,and(3) compare the performance of the RF algorithm with support vector regression(SVR) and artificial neural network(ANN) machine-learning algorithms for wheat biomass estimation.Single HJ-CCD images of wheat from test sites in Jiangsu province were obtained during the jointing,booting,and anthesis stages of growth.Fifteen vegetation indices were calculated based on these images.In-situ wheat above-ground dry biomass was measured during the HJ-CCD data acquisition.The results showed that the RF model produced more accurate estimates of wheat biomass than the SVR and ANN models at each stage,and its robustness is as good as SVR but better than ANN.The RF algorithm provides a useful exploratory and predictive tool for estimating wheat biomass on a large scale in Southern China.展开更多
Common wheat is the major cereal crop that underpins the food safety of China. Both winter wheat and spring wheat are grown on ~24 million ha. This review aims to summarize the current status of wheat production and b...Common wheat is the major cereal crop that underpins the food safety of China. Both winter wheat and spring wheat are grown on ~24 million ha. This review aims to summarize the current status of wheat production and breeding progress in the northern wheat production areas of the country, and to review recently advanced technologies being applied in wheat breeding, including the use of dwarf-male-sterile(DMS) wheat, speed breeding and specialized wheat breeding SNP chips. Crossing is the initial step in most breeding programs. DMS wheat is a convenient tool for large scale production of hybrid seed. Speed breeding or accelerated generation turnover attempts to reduce the time taken in cultivar development. Several different SNP chips are high-throughput, genome-wide genotyping platforms for breeding and research.展开更多
Quantitative trait loci (QTLs) for plant height in wheat (Triticum aestivum L.) were studied using a set of 168 doubled haploid (DH) lines, which were derived from the cross Huapei 3/Yumai 57. A genetic linkage ...Quantitative trait loci (QTLs) for plant height in wheat (Triticum aestivum L.) were studied using a set of 168 doubled haploid (DH) lines, which were derived from the cross Huapei 3/Yumai 57. A genetic linkage map was constructed using 283 SSR and 22 EST-SSR markers. The DH population and the parents were evaluated for wheat plant height in 2005 and 2006 in Tai'an and 2006 in Suzhou. QTL analyses were performed using the software of QTLNetwork version 2.0 based on the mixed linear model. Four additive QTLs and five pairs of epistatic effects were detected, which were distributed on chromosomes 3A, 4B, 4D, 5A, 6A, 7B, and 7D. Among them, three additive QTLs and three pairs of epistatic QTLs showed QTL×environment interactions (QEs). Two major QTLs, Qph4B and Qph4D, which accounted for 14.51% and 20.22% of the phenotypic variation, were located similar to the reported locations of the dwarfing genes Rhtl and Rht2, respectively. The Qph3A-2 with additive effect was not reported in previous linkage mapping studies. The total QTL effects detected for the plant height explained 85.04% of the phenotypic variation, with additive effects 46.07%, epistatic effects 19.89%, and QEs 19.09%. The results showed that both additive effects and epistatic effects were important genetic bases of wheat plant height, which were subjected to environmental modifications, and caused dramatic changes in phenotypic effects. The information obtained in this study will be useful for manipulating the QTLs for wheat plant height by molecular marker-assisted selection (MAS).展开更多
The objective of this paper is to review progress made in wheat breeding for Fusarium head blight(FHB) resistance in China, the United States of America(USA), and Canada. In China,numerous Chinese landraces possessing...The objective of this paper is to review progress made in wheat breeding for Fusarium head blight(FHB) resistance in China, the United States of America(USA), and Canada. In China,numerous Chinese landraces possessing high levels of FHB resistance were grown before the 1950 s. Later, pyramiding multiple sources of FHB resistance from introduced germplasm such as Mentana and Funo and locally adapted cultivars played a key role in combining satisfactory FHB resistance and high yield potential in commercial cultivars.Sumai 3, a Chinese spring wheat cultivar, became a major source of FHB resistance in the USA and Canada, and contributed to the release of more than 20 modern cultivars used for wheat production, including the leading hard spring wheat cultivars Alsen, Glenn, Barlow and SY Ingmar from North Dakota, Faller and Prosper from Minnesota, and AAC Brandon from Canada. Brazilian wheat cultivar Frontana, T. dicoccoides and other local germplasm provided additional sources of resistance. The FHB resistant cultivars mostly relied on stepwise accumulation of favorable alleles of both genes for FHB resistance and high yield,with marker-assisted selection being a valuable complement to phenotypic selection. With the Chinese Spring reference genome decoded and resistance gene Fhb1 now cloned, new genomic tools such as genomic selection and gene editing will be available to breeders, thus opening new possibilities for development of FHB resistant cultivars.展开更多
The effects of osmotic stress on the ATPase activity, the contents of —SH group and conjugated polyamines in mitochondrial membrane from wheat seedling [Triticum aestivum L. cv. Yumai No.18(drought-tolerant) and cv. ...The effects of osmotic stress on the ATPase activity, the contents of —SH group and conjugated polyamines in mitochondrial membrane from wheat seedling [Triticum aestivum L. cv. Yumai No.18(drought-tolerant) and cv. Yumai No.9(drought-sensitive)] roots were investigated. The results showed that ATPase activity and —SH group content decreased with polyethylene glycol(PEG) 6000(-0.55 MPa) treatment for 7 d, in concert with the decrease of the ratio of noncovalently conjugated spermidine(NCC-Spd)/noncovalently conjugated putrescine(NCC-Put) and increase of the covalently conjugated putrescine(CC-Put). Osmotic stress injury to Yangmai No.9 seedlings was alleviated greatly with 1 mmol/L exogenous spermidine(Spd), in concert with marked increases of the ratio of NCC-Spd/NCC-Put, —SH group contents and ATPase activity in mitochondrial membrane. Under osmotic stress, the concomitant treatment of Yumai No.18 seedlings with methylglyoxyl bis(guanylhydrazone) (MGBG), an inhibitor of S-adenosyl methionine decarboxylase(SAMDC), and phenanthrolin (o-Phen), an inhibitor of transglutaminase(TGase), caused a significant decrease of the ratio of NCC-Spd / NCC-Put, CC-Put contents, respectively, in concert with the marked decreases of ATPase activity, —SH group content and its tolerance to osmotic stress. All the results above suggested that osmotic stress tolerance of wheat seedlings was associated with the ATPase activity, the contents of —SH group, NCC-Spd and CC-Put in mitochondrial membrane.展开更多
Good crop stand establishment and root system development are essential for optimum grain yield of dryland wheat (Triti-cum aestivumL.). At present, little is known about the effect of tilage and straw mulch on the ...Good crop stand establishment and root system development are essential for optimum grain yield of dryland wheat (Triti-cum aestivumL.). At present, little is known about the effect of tilage and straw mulch on the root system of wheat under dryland areas in southwestern China. The aim of this study was to evaluate the effect of three tilage treatments (no-til, NT; rotary til, RT; conventional til, CT) and two crop residue management practices (straw mulch, ML; non-straw mulch, NML) on stand establishment, root growth and grain yield of wheat. NT resulted in lower soil cover thickness for the wheat seed, higher number of uncovered seeds, lower percentage of seedling-less ridges and lower tiler density compared to RT and CT; ML resulted in higher tiler density compared to NML. Straw mulching resulted in more soil water content and root length density (RLD) at most of the growth stages and soil depths. The maximum RLD, root surface area density and root dry matter density were obtained under NT. In the topmost 10 cm soil layer, higher RLD values were found under NT than those under RT and CT. There were no signiifcant differences in the yield or yield components of wheat among the tilage treatments in 2011–2012, but NT resulted in a signiifcant higher yield compared to RT and CT in 2012–2013. Grain yield was signiifcantly higher in ML compared to in NML. A strong relationship was observed between the water-use efifciency and the grain yield. Both NT and ML proved beneifcial for wheat in term of maintaining higher tiler density, better soil water status and root growth, leading to a higher grain yield and enhanced water-use efifciency, especialy in a low rainfal year.展开更多
Common wheat is an important and widely cultivated food crop throughout the world.Much progress has been made in regard to wheat genome sequencing in the last decade.Starting from the sequencing of single chromosomes/...Common wheat is an important and widely cultivated food crop throughout the world.Much progress has been made in regard to wheat genome sequencing in the last decade.Starting from the sequencing of single chromosomes/chromosome arms whole genome sequences of common wheat and its diploid and tetraploid ancestors have been decoded along with the development of sequencing and assembling technologies. In this review, we give a brief summary on international progress in wheat genome sequencing, and mainly focus on reviewing the effort and contributions made by Chinese scientists.展开更多
Granule size distribution of wheat starch is an important characteristic that can affect its chemical composition and the functionality of wheat products. Two high-yield winter wheat cultivars were used to evaluate th...Granule size distribution of wheat starch is an important characteristic that can affect its chemical composition and the functionality of wheat products. Two high-yield winter wheat cultivars were used to evaluate the effects of the application of exogenous ABA or GA during the reproductive phase of the initial grain filling on starch granule size distribution and starch components in grains at maturity. The results indicated that a bimodal curve was found in the volume and surface area distribution of grain starch granules, and a unimodal curve was observed for the number distribution under all treatments. The exogenous ABA resulted in a significant increase in the proportions (both by volume and by surface area) of B-type (〈9.9 Ixm in diameter) starch granules, with a reduction in those of A-type (〉9.9 ~tm) starch granules, while, the exogenous GA3 led to converse effects on size distribution of those starch granules. The exogenous ABA also increased starch, amylose and amylopectin contents at maturity but significantly reduced the ratio of amylose to amylopectin. Application of GA3 significantly reduced starch content, amylopectin content but increased the ratio of amylose to amylopectin. The ratio of amylose to amylopectin showed a significant and negative relationship with the volume proportion of granules 〈9.9 μm, but was positively related to the volume proportion of granules 22.8-42.8 μm.展开更多
Drought is a major constraint in many wheat( Triticum aestivum L.) production regions. Quantitative trait loci (QTLs) conditioning drought tolerance at stages of germination and seedling in wheat were identified in...Drought is a major constraint in many wheat( Triticum aestivum L.) production regions. Quantitative trait loci (QTLs) conditioning drought tolerance at stages of germination and seedling in wheat were identified in a double haploid (DH) population derived from the cross, Hanxuan10×Lumai14, using amplified fragment length polymorphism (AFLP) and simple sequence repeat (SSR) markers. Interval mapping analysis revealed that QTLs for drought tolerance at germination stage were located on chromosomes 1B, 2B, 5A, 6B, 7A and 7B, respectively, and the most effective QTL was mapped on chromosome 2B, explaining 27.2% of phenotypic variance. The QTLs for drought tolerance at seedling stage were located on 1B, 3B and 7B, respectively, and the most effective QTL was mapped on chromosome 3B, explaining 21.6% of phenotypic variance. Their positions were different from those of QTLs conferring drought tolerance at germination stage, indicating that drought tolerance at germination stage and seedling stage was controlled by different loci. Most of the identified QTLs explained 18% or more of phenotypic variance for drought tolerance at germination and seedling stage, and would be useful in future for marker assisted selection programs and cultivar improvement.展开更多
基金Supported by the Research Projects(CARS-03,BE2013439,CX132021)
文摘In order to obtain genetic information for grain yield, seven genetically diverse wheat cultivars were crossed in an incomplete diallel to study the inheritance of grain yield using F_2 progenies for two years. Significant differences were observed among genotype, year and genotype × year interaction for grain yield, and both general combining ability(GCA) and specific combining ability(SCA) were also highly significant for grain yield, suggesting that the trait was controlled by both additive and non-additive effect. The GCA estimates revealed that the best combiners for grain yield were Yangmai 5 and Ningmai 9. Adequacy tests revealed that data of grain yield was fully adequate for genetic interpretation. Over-dominance genetic effects were important for the expression of grain yield. Grain yield exhibited moderately high value of narrow sense heritability(h_N^2=66.98% and h_N^2=72.37%).
基金funded by the Major Project of Agricultural Biological Breeding,China(2022ZD0401902)the Science and Technology Innovation Project of Beijing Academy of Agriculture and Forestry Sciences,China(KJCX20230301 and KJCX20230307)。
文摘Identifying stable quantitative trait loci(QTLs)for yield-related traits across populations and environments is crucial for wheat breeding and genetic studies.Consensus maps also play important roles in wheat genetic and genomic research.In the present study,a wheat consensus map was constructed using a doubled haploid(DH)population derived from Jinghua 1×Xiaobaidongmai(JX),an F_(2)population derived from L43×Shanxibaimai(LS)and the BAAFS Wheat 90K SNP array single nucleotide polymorphism(SNP)array.A total of 44,503 SNP markers were mapped on the constructed consensus map,and they covered 5,437.92 cM across 21 chromosomes.The consensus map showed high collinearity with the individual maps and the wheat reference genome IWGSC RefSeq v2.1.Phenotypic data on eight yield-related traits were collected in the JX population,as well as the F_(2:3)and F_(2:4)populations of LS,in six,two and two environments,respectively,and those data were used for QTL analysis.Inclusive composite interval mapping(ICIM)identified 32 environmentally stable QTLs for the eight yield-related traits.Among them,four QTLs(QPH.baafs-4B,QKNS.baafs-4B,QTGW.baafs-4B,and QSL.baafs-5A.3)were detected across mapping populations and environments,and nine stable QTLs(qKL.baafs-1D,QPH.baafs-2B,QKNS.baafs-3D,QSL.baafs-3D,QKW.baafs-4B,QPH.baafs-5D,QPH.baafs-6A.1,QSL.baafs-6A,and QSL.baafs-6D)are likely to be new.The physical region of 17.25–44.91 Mb on chromosome 4B was associated with six yield-related traits,so it is an important region for wheat yield.The physical region around the dwarfing gene Rht24 contained QTLs for kernel length(KL),kernel width(KW),spike length(SL),and thousand-grain weight(TGW),which are either from a pleiotropic effect of Rht24 or closely linked loci.For the stable QTLs,254 promising candidate genes were identified.Among them,TraesCS5A03G1264300,TraesCS1B03G0624000 and TraesCS6A03G0697000 are particularly noteworthy since their homologous genes have similar functions for the corresponding traits.The constructed consensus map and the identified QTLs along with their candidate genes will facilitate the genetic dissection of wheat yield-related traits and accelerate the development of wheat cultivars with desirable plant morphology and high yield.
基金Supported by the Program of Beijing Basic Research and Innovation Platform for Agricultural Breeding Ⅱ(No.D080705006900801)National"863"Program(No.2009AA101102,2006AA100102)Beijing Natural Science Foundation(No.5091001)~~
文摘[Objective]The study aimed to map QTLs(Quantitative trait loci)of heading stage for phtopeiod-thermo sensitive male sterile line BS366 in wheat.[Method] A population of 234 doubled haploid derived from the cross between BS366 and Baiyu149 was planted in Beijing and Funan in 2007,respectively.We used composite interval mapping(CIM)method to analyse the QTLs for heading stage.[Result]We detected 15 QTLs for heading stage.8 QTLs were detected in both Beijing and Funan,which were located on 1B,2A,2D,3B(2 loci),6B(2 loci)and 7B.A single QTL accounted for 2.42%-10.98% of pheotypic varience.[Conclusion] Eight QTLs which were detected under two environments could be applied for marker-assisted breeding and improvement of BS366.The QTL on chromosome 1B was new for heading stage,which enriches the QTL resource.
基金Supported by the National Natural Science Foundation of China(31071413)the Key Scientific and Technological Project of Henan Province(122102110189)+2 种基金the Natural Science Foundation of Henan Province(2011B210002)the Project for the Youth of Henan Institute of Education(20090103)the Key Research Project of Institution of Higher Education(15A210020)~~
文摘Effects of four culture media including MS, N6, C17 and K on wheat anther callus induction in vitro culture were studied. The results showed that the callus in- duction rate of four kinds of culture medium was in the order of K〉C17〉N6〉MS.
基金This work was supported by the Foundation of Technological Department of Shaanxi Province (No. 06JK267)Basic Research Foundation of Xi’an University of Architecture & Technology (No. JC0507)
文摘Analysis of the gene expression differentiation in leaves of wheat (Triticum aestivum L.) cultivar Baofeng 7228, under salt stress, was carried out by Differential-Display Reverse Transcription-polymerase Chain Reaction (DDRT-PCR.) Twenty-seven differential cDNA fragments were obtained. The expression of the SR07 fragment was induced noticeably by salt treatment, and the nucleotide sequence homology of 87% between the SR07 fragment and PIPs (water channel proteins) was observed. Further research showed that a 561 bp open read frame was present in the SR07 fragment. Plant expression vector of pCAMBIA-SR07 was constructed and three transformants of tobacco (Nicotiana tobacum) mediated by Agrobacterium tumefaciens plasmid were obtained. Resistance to salt, PEG, and mannitol stresses of the three transformants were examined. No significant difference (P 〉 0.05) was observed between the control and the transformants in resistance to salt stress, but there was significant difference (P 〈 0.05) between the control and the transformants in resistance to PEG and mannitol stresses. Therefore, the expression of the SR07 fragment may play an important role in the water regulation of the plant.
基金Supported by the National Basic Research Program of China(2009CB118602)Young Backbone Teachers Program of Henan Province(2011)~~
文摘[Objective] The aim of this study was to determine the variation of phytic acid content (PAC) and its frequency distribution, as well as the relationship between PAC and protein content, kernel characteristics in 161 Chinese winter wheat cultivars from four regions. [Method] One hundred and sixty-one winter wheat varieties from China Wheat Zones I, II, III and IV (Table 1) were grown in a randomized block de- sign, in the 2009-2011 cropping season; and then the indexes for describing the grain morphological characteristics such as the thousand kernel weight (TKW), kernel length (KL), kernel width (KW) and kernel thickness (KT) were measured; the phytic acid content (PAC), protein content and sedimentation value were also determined; finally, the relationship between PAC and protein content, kernel characteristics were analyzed. [Result] The PAC in the cultivars tested ranged from 0.92% to 1.95% with a mean value of 1.41%. Protein content ranged from 12.60% to 19.20%, with a mean of 15.24%. Most (53.4%) of the wheat genotypes had a PAC value in the range of 1.25% to 1.55%. No significant correlation was found between PAC and protein content, sedimentation value, while protein content and SDS sedimentation value was significant correlated, which suggested the possibility of breeding wheat cultivars that have a low PAC but a high protein content and good gluten quality. There was a high correlation between TKW and KW (,.=0.79), KL (r=0.50) and KT (r=0.64). PAC was found having no significant correlation with TKW, KW, KL and KT. [Conclusion] The result suggests the possibility of breeding wheat cultivars that have a low PAC but high kernel weight.
文摘Wheat ( Triticum aestivum L.) plants were grown under ambient and doubled_CO 2(plus 350 μL/L) concentration in cylindrical open_top chamber to examine their effects on the ultrastructure, supramolecular architecture, absorption spectrum and low temperature (77 K) fluorescence emission spectrum of the chloroplasts from wheat leaves. The results were briefly summarized as follows: (1) The wheat leaves possessed normally developed chloroplasts with intact grana and stroma thylakoid membranes; The grana intertwined with stroma thylakoid membranes and increased slightly in stacking degree and the width of granum, in spite of more accumulated starch grains within the chloroplasts than those in control; (2) The particle density in the stacked region of the endoplasmic fracture face (EFs) and protoplasmic fracture face (PFs) and in the unstacked region the endoplasmic fracture face (EFu) and the protoplasmic fracture face (PFu) was significantly higher than that of control. Furthermore, in some cases many more particles on EFs faces of thylakoid membranes appeared as a paracrystalline particle array; (3) The variations in the structure of chloroplasts were consistent with the absorption spectra and the low temperature (77 K) fluorescence emission spectra of the chloroplasts developed under the doubled_CO 2 concentration. Results indicate that the capability of light energy absorption of chloroplasts and regulative capability of excitation energy distribution between PSⅡ and PSⅠ were raised by doubled_CO 2 concentration. This is very favorable for final productivity of wheat.
文摘A brief review on the development of wheat germplasm with introduced powdery mildew and scab resistance from Haynaldia villosa Sch. and Leymus racemosus Lam., Roegneria ciliaris (Trin.) Nevski as well as R. kamoji C. Koch respectively was made. In the course of germplasm development, genome analysis by means of chromosome banding, genomic in situ hybridization (GISH) or fluorescence in situ hybridization (FISH), molecular markers, particularly restriction fragment length polymorphism (RFLP) coupled with aneuploid analysis was employed for the purpose of improving breeding efficiency. Potential use of such germplasm in wheat breeding practice, basic studies and some related problems were also discussed.
文摘Studies were carried out to establish an efficient regeneration system of three bread wheat cultivars. Results showed induction medium containing 2,4-dichlorophenoxyacetic acid (2,4-D) had a higher plantlet regeneration frequency than Piclorm, with an average frequency of 54% in all treatments. Optimal condition for different genotypic rice was as following: induction medium (MSS 3AA/2) with 0.5 mg L-1 2,4-D, regeneration medium (R) with 0.01 mg L-1 2,4-D and 3 mg L-1 KT. The average regeneration frequency reached 83.3% under the condition. Correlation analysis showed that root differentiation, in different level, correlated with green spot regeneration, and with the number of regenerated plants per callus. No correlation was found between green spots regenerated and the numbers of plants regenerated per callus.
基金supported by the National Natural Science Foundation of China(No.31271642)the Natural Science Foundation of Education Department of Jiangsu Province(No.09KJB20013,No.12KJB520018)+1 种基金the Six Talent Summit Project of Jiangsu Province(No.2011-NY039)the Science and Technology Innovation Development Foundation of Yangzhou University(No.2015CXJ022)
文摘Wheat biomass can be estimated using appropriate spectral vegetation indices.However,the accuracy of estimation should be further improved for on-farm crop management.Previous studies focused on developing vegetation indices,however limited research exists on modeling algorithms.The emerging Random Forest(RF) machine-learning algorithm is regarded as one of the most precise prediction methods for regression modeling.The objectives of this study were to(1) investigate the applicability of the RF regression algorithm for remotely estimating wheat biomass,(2) test the performance of the RF regression model,and(3) compare the performance of the RF algorithm with support vector regression(SVR) and artificial neural network(ANN) machine-learning algorithms for wheat biomass estimation.Single HJ-CCD images of wheat from test sites in Jiangsu province were obtained during the jointing,booting,and anthesis stages of growth.Fifteen vegetation indices were calculated based on these images.In-situ wheat above-ground dry biomass was measured during the HJ-CCD data acquisition.The results showed that the RF model produced more accurate estimates of wheat biomass than the SVR and ANN models at each stage,and its robustness is as good as SVR but better than ANN.The RF algorithm provides a useful exploratory and predictive tool for estimating wheat biomass on a large scale in Southern China.
基金Financial support provided by the National Key Research and Development Program of China (2017YFD0101000)the Agricultural Science and Technology Innovation Program is acknowledged
文摘Common wheat is the major cereal crop that underpins the food safety of China. Both winter wheat and spring wheat are grown on ~24 million ha. This review aims to summarize the current status of wheat production and breeding progress in the northern wheat production areas of the country, and to review recently advanced technologies being applied in wheat breeding, including the use of dwarf-male-sterile(DMS) wheat, speed breeding and specialized wheat breeding SNP chips. Crossing is the initial step in most breeding programs. DMS wheat is a convenient tool for large scale production of hybrid seed. Speed breeding or accelerated generation turnover attempts to reduce the time taken in cultivar development. Several different SNP chips are high-throughput, genome-wide genotyping platforms for breeding and research.
基金This work was supported by the National Natural Science Foundation of China(No.30471082)the Hi-Tech Research and Development(863)Program of China(No.2006AA100101 and 2006AA10Z1E9).
文摘Quantitative trait loci (QTLs) for plant height in wheat (Triticum aestivum L.) were studied using a set of 168 doubled haploid (DH) lines, which were derived from the cross Huapei 3/Yumai 57. A genetic linkage map was constructed using 283 SSR and 22 EST-SSR markers. The DH population and the parents were evaluated for wheat plant height in 2005 and 2006 in Tai'an and 2006 in Suzhou. QTL analyses were performed using the software of QTLNetwork version 2.0 based on the mixed linear model. Four additive QTLs and five pairs of epistatic effects were detected, which were distributed on chromosomes 3A, 4B, 4D, 5A, 6A, 7B, and 7D. Among them, three additive QTLs and three pairs of epistatic QTLs showed QTL×environment interactions (QEs). Two major QTLs, Qph4B and Qph4D, which accounted for 14.51% and 20.22% of the phenotypic variation, were located similar to the reported locations of the dwarfing genes Rhtl and Rht2, respectively. The Qph3A-2 with additive effect was not reported in previous linkage mapping studies. The total QTL effects detected for the plant height explained 85.04% of the phenotypic variation, with additive effects 46.07%, epistatic effects 19.89%, and QEs 19.09%. The results showed that both additive effects and epistatic effects were important genetic bases of wheat plant height, which were subjected to environmental modifications, and caused dramatic changes in phenotypic effects. The information obtained in this study will be useful for manipulating the QTLs for wheat plant height by molecular marker-assisted selection (MAS).
基金financially supported by the National Key Research and Development Program of China (2017YFD0101000)International Scientific and Technological Cooperation Project (2016YFE0108600)Agricultural Science and Technology Innovation Program of CAAS
文摘The objective of this paper is to review progress made in wheat breeding for Fusarium head blight(FHB) resistance in China, the United States of America(USA), and Canada. In China,numerous Chinese landraces possessing high levels of FHB resistance were grown before the 1950 s. Later, pyramiding multiple sources of FHB resistance from introduced germplasm such as Mentana and Funo and locally adapted cultivars played a key role in combining satisfactory FHB resistance and high yield potential in commercial cultivars.Sumai 3, a Chinese spring wheat cultivar, became a major source of FHB resistance in the USA and Canada, and contributed to the release of more than 20 modern cultivars used for wheat production, including the leading hard spring wheat cultivars Alsen, Glenn, Barlow and SY Ingmar from North Dakota, Faller and Prosper from Minnesota, and AAC Brandon from Canada. Brazilian wheat cultivar Frontana, T. dicoccoides and other local germplasm provided additional sources of resistance. The FHB resistant cultivars mostly relied on stepwise accumulation of favorable alleles of both genes for FHB resistance and high yield,with marker-assisted selection being a valuable complement to phenotypic selection. With the Chinese Spring reference genome decoded and resistance gene Fhb1 now cloned, new genomic tools such as genomic selection and gene editing will be available to breeders, thus opening new possibilities for development of FHB resistant cultivars.
文摘The effects of osmotic stress on the ATPase activity, the contents of —SH group and conjugated polyamines in mitochondrial membrane from wheat seedling [Triticum aestivum L. cv. Yumai No.18(drought-tolerant) and cv. Yumai No.9(drought-sensitive)] roots were investigated. The results showed that ATPase activity and —SH group content decreased with polyethylene glycol(PEG) 6000(-0.55 MPa) treatment for 7 d, in concert with the decrease of the ratio of noncovalently conjugated spermidine(NCC-Spd)/noncovalently conjugated putrescine(NCC-Put) and increase of the covalently conjugated putrescine(CC-Put). Osmotic stress injury to Yangmai No.9 seedlings was alleviated greatly with 1 mmol/L exogenous spermidine(Spd), in concert with marked increases of the ratio of NCC-Spd/NCC-Put, —SH group contents and ATPase activity in mitochondrial membrane. Under osmotic stress, the concomitant treatment of Yumai No.18 seedlings with methylglyoxyl bis(guanylhydrazone) (MGBG), an inhibitor of S-adenosyl methionine decarboxylase(SAMDC), and phenanthrolin (o-Phen), an inhibitor of transglutaminase(TGase), caused a significant decrease of the ratio of NCC-Spd / NCC-Put, CC-Put contents, respectively, in concert with the marked decreases of ATPase activity, —SH group content and its tolerance to osmotic stress. All the results above suggested that osmotic stress tolerance of wheat seedlings was associated with the ATPase activity, the contents of —SH group, NCC-Spd and CC-Put in mitochondrial membrane.
基金supported by the China Agriculture Research System(CARS-3)the Public Welfare Industry(Agriculture)Scientific Research of China(200903010-06)
文摘Good crop stand establishment and root system development are essential for optimum grain yield of dryland wheat (Triti-cum aestivumL.). At present, little is known about the effect of tilage and straw mulch on the root system of wheat under dryland areas in southwestern China. The aim of this study was to evaluate the effect of three tilage treatments (no-til, NT; rotary til, RT; conventional til, CT) and two crop residue management practices (straw mulch, ML; non-straw mulch, NML) on stand establishment, root growth and grain yield of wheat. NT resulted in lower soil cover thickness for the wheat seed, higher number of uncovered seeds, lower percentage of seedling-less ridges and lower tiler density compared to RT and CT; ML resulted in higher tiler density compared to NML. Straw mulching resulted in more soil water content and root length density (RLD) at most of the growth stages and soil depths. The maximum RLD, root surface area density and root dry matter density were obtained under NT. In the topmost 10 cm soil layer, higher RLD values were found under NT than those under RT and CT. There were no signiifcant differences in the yield or yield components of wheat among the tilage treatments in 2011–2012, but NT resulted in a signiifcant higher yield compared to RT and CT in 2012–2013. Grain yield was signiifcantly higher in ML compared to in NML. A strong relationship was observed between the water-use efifciency and the grain yield. Both NT and ML proved beneifcial for wheat in term of maintaining higher tiler density, better soil water status and root growth, leading to a higher grain yield and enhanced water-use efifciency, especialy in a low rainfal year.
基金supported by the Chinese Academy of Sciences (QYZDJ-SSW-SMC001)the National Key Research and Development Program of China (2016YFD0101004)
文摘Common wheat is an important and widely cultivated food crop throughout the world.Much progress has been made in regard to wheat genome sequencing in the last decade.Starting from the sequencing of single chromosomes/chromosome arms whole genome sequences of common wheat and its diploid and tetraploid ancestors have been decoded along with the development of sequencing and assembling technologies. In this review, we give a brief summary on international progress in wheat genome sequencing, and mainly focus on reviewing the effort and contributions made by Chinese scientists.
基金supported by the National Natural Science Foundation of China (31271661, 30871477)the National Basic Program of China (2009CB118602)the Special Fund for Agro-Scientific Research in the Public Interest of China (201203100)
文摘Granule size distribution of wheat starch is an important characteristic that can affect its chemical composition and the functionality of wheat products. Two high-yield winter wheat cultivars were used to evaluate the effects of the application of exogenous ABA or GA during the reproductive phase of the initial grain filling on starch granule size distribution and starch components in grains at maturity. The results indicated that a bimodal curve was found in the volume and surface area distribution of grain starch granules, and a unimodal curve was observed for the number distribution under all treatments. The exogenous ABA resulted in a significant increase in the proportions (both by volume and by surface area) of B-type (〈9.9 Ixm in diameter) starch granules, with a reduction in those of A-type (〉9.9 ~tm) starch granules, while, the exogenous GA3 led to converse effects on size distribution of those starch granules. The exogenous ABA also increased starch, amylose and amylopectin contents at maturity but significantly reduced the ratio of amylose to amylopectin. Application of GA3 significantly reduced starch content, amylopectin content but increased the ratio of amylose to amylopectin. The ratio of amylose to amylopectin showed a significant and negative relationship with the volume proportion of granules 〈9.9 μm, but was positively related to the volume proportion of granules 22.8-42.8 μm.
文摘Drought is a major constraint in many wheat( Triticum aestivum L.) production regions. Quantitative trait loci (QTLs) conditioning drought tolerance at stages of germination and seedling in wheat were identified in a double haploid (DH) population derived from the cross, Hanxuan10×Lumai14, using amplified fragment length polymorphism (AFLP) and simple sequence repeat (SSR) markers. Interval mapping analysis revealed that QTLs for drought tolerance at germination stage were located on chromosomes 1B, 2B, 5A, 6B, 7A and 7B, respectively, and the most effective QTL was mapped on chromosome 2B, explaining 27.2% of phenotypic variance. The QTLs for drought tolerance at seedling stage were located on 1B, 3B and 7B, respectively, and the most effective QTL was mapped on chromosome 3B, explaining 21.6% of phenotypic variance. Their positions were different from those of QTLs conferring drought tolerance at germination stage, indicating that drought tolerance at germination stage and seedling stage was controlled by different loci. Most of the identified QTLs explained 18% or more of phenotypic variance for drought tolerance at germination and seedling stage, and would be useful in future for marker assisted selection programs and cultivar improvement.