The objective of this paper is to review progress made in wheat breeding for Fusarium head blight(FHB) resistance in China, the United States of America(USA), and Canada. In China,numerous Chinese landraces possessing...The objective of this paper is to review progress made in wheat breeding for Fusarium head blight(FHB) resistance in China, the United States of America(USA), and Canada. In China,numerous Chinese landraces possessing high levels of FHB resistance were grown before the 1950 s. Later, pyramiding multiple sources of FHB resistance from introduced germplasm such as Mentana and Funo and locally adapted cultivars played a key role in combining satisfactory FHB resistance and high yield potential in commercial cultivars.Sumai 3, a Chinese spring wheat cultivar, became a major source of FHB resistance in the USA and Canada, and contributed to the release of more than 20 modern cultivars used for wheat production, including the leading hard spring wheat cultivars Alsen, Glenn, Barlow and SY Ingmar from North Dakota, Faller and Prosper from Minnesota, and AAC Brandon from Canada. Brazilian wheat cultivar Frontana, T. dicoccoides and other local germplasm provided additional sources of resistance. The FHB resistant cultivars mostly relied on stepwise accumulation of favorable alleles of both genes for FHB resistance and high yield,with marker-assisted selection being a valuable complement to phenotypic selection. With the Chinese Spring reference genome decoded and resistance gene Fhb1 now cloned, new genomic tools such as genomic selection and gene editing will be available to breeders, thus opening new possibilities for development of FHB resistant cultivars.展开更多
Fusarium head blight(FHB)is one of the most detrimental wheat diseases which greatly decreases the yield and grain quality,especially in the middle and lower reaches of the Yangtze River of China.Fhb1 and Fhb2 are two...Fusarium head blight(FHB)is one of the most detrimental wheat diseases which greatly decreases the yield and grain quality,especially in the middle and lower reaches of the Yangtze River of China.Fhb1 and Fhb2 are two major resistance loci against Fusarium graminearum.Yangmai 15(YM15)is one of the most popular varieties in the middle and lower reaches of the Yangtze River,and it has good weak gluten characters but poor resistance to FHB.Here we used Fhb1 and Fhb2 to improve the FHB resistance of YM15 by a molecular marker-assisted selection(MAS)backcrossing strategy.The selection of agronomic traits was performed for each generation.We successfully selected seven introgressed lines which carry homozygous Fhb1 and Fhb2 with significantly higher FHB resistance than the recurrent parent YM15.Three of the introgressed lines had agronomic and quality characters that were similar to YM15.This study demonstrates that the pyramiding of Fhb1 and Fhb2 could significantly improve the FHB resistance in wheat using the MAS approach.展开更多
Bread wheat(Triticum aestiuum L.),which provides about 20%of daily calorie intake,is the most widely cultivated crop in the world,in terms of total area devoted to its cultivation.Therefore,even small increases in whe...Bread wheat(Triticum aestiuum L.),which provides about 20%of daily calorie intake,is the most widely cultivated crop in the world,in terms of total area devoted to its cultivation.Therefore,even small increases in wheat yield can translate into large gains.Reducing the gap between actual and potential grain yield in wheat is a crucial task to feed the increasing world population.Fusarium head blight(FHB)caused by the pathogenic fungus Fusaium graminearum and related Fusarium species is one of the most devastating wheat diseases throughout the world.This disease reduces not only the yield but also the quality by contaminating the grain with mycotoxins harmful for humans,animals and the environment.In recent years,remarkable achievements attained in omics"technologies have not only provided new insights into understanding of processes involved in pathogenesis but also helped develop effective new tools for practical plant breeding.Sequencing of the genomes of various wheat patho gens,including F.graminearum,as well as those of bread and durum wheat and their wild relatives,together with advances made in transcriptomics and bioinformatics,has allowed the identification of candidate pathogen effectors and corresponding host resistance(R)and susceptibility(S)genes.However,so far,FHB effectors and wheat susceptibility genes/factors have been poorly studied.In this paper,we first briefly highlighted recent examples of improving resistance against pathogens via new techniques in different host species.We then propose effective strategies towards developing wheat cultivars with improved resistance to FHB.We hope that the article will spur discussions and interest among researchers about novel approaches with great potential for improving wheat against FHB.展开更多
[ Objective] The study aimed to discuss the relation of leaf stomatal traits to yield and drought resistance of wheat. [ Method] Using the DH population of wheat cultivar Hanxuanl0/Lumai14 as the test object, the rela...[ Objective] The study aimed to discuss the relation of leaf stomatal traits to yield and drought resistance of wheat. [ Method] Using the DH population of wheat cultivar Hanxuanl0/Lumai14 as the test object, the relation of leaf stomatal density (SD), length (SL) and width ( SW), stomatal conductance (g,), photosynthetic rate ( Pn ), transpiration rate ( Tr) to grain yield per plant and index of drought resistance (IDR) on the 10th and 20t" day after anthesis under the conditions of drought stress and normal irrigation were discussed by the methods of correlation analysis and path analysis. [ Result] Under the two water conditions, the correlations of these stomatal traits with yield components and IDR were mostly not significant on the 10t" day after anthesis, but there were significantly positive correlations between thousand kernel weight (TKW) and these traits on the 20^th day after anthesis. Path analysis showed that g,, Pn and Tt, were main factors affecting yield per plant (YPP) and IDR, and they had stron- ger direct effects on YPP and IDR, while their indirect interaction was also strong. The direct effects of SD, SL and SW on YPP and IDR were small, as well as their indirect action among SD, SL and SW. On the other hand, the correlations between SD and SL were significant, and the correlations of SL with SW, gn, P, and Tt, were extremely significant on the 10th and 20th day after anthesis under the two water conditions. However, the correlations of SD and SL with g,, P,, and Tr changed with water conditions or growth stages, showing that water conditions or growth stages had great effects on the correlations between two traits. Therefore, it is not always a good means to improve stomatal conductance, photosynthetic rate and transpiration rate and hence promote wheat yield by selecting stomatal density and size. [ Conclusion] The research could provide scientific references for revealing the roles of leaf stomatal traits in wheat breeding for drought resistance.展开更多
Wheat resistance to Fusarium head blight(FHB)has often been associated with some undesirable agronomic traits.To study the relationship between wheat FHB resistance and agronomic traits,we constructed a linkage map of...Wheat resistance to Fusarium head blight(FHB)has often been associated with some undesirable agronomic traits.To study the relationship between wheat FHB resistance and agronomic traits,we constructed a linkage map of single nucleotide polymorphisms(SNPs)using an F6:8 population from G97252WG97380A.The two hard winter wheat parents showed contrasts in FHB resistance,plant height(HT),heading date(HD),spike length(SL),spike compactness(SC),kernel number per spike(KNS),spikelet number per spike(SNS),thousand-grain weight(TGW)and grain size(length and width).Quantitative trait locus(QTL)mapping identified one major QTL(QFhb.hwwg-2DS)on chromosome arm 2DS for the percentage of symptomatic spikelets(PSS)in the spike,deoxynivalenol(DON)content and Fusarium damaged kernel(FDK).This QTL explained up to 71.8%of the phenotypic variation for the three FHB-related traits and overlapped with the major QTL for HT,HD,SL,KNS,SNS,TGW,and grain size.QTL on chromosome arms 2AL,2DS,3AL and 4BS were significant for the spike and grain traits measured.G97252W contributed FHB resistance and high SNS alleles at QFhb.hwwg-2DS,high KNS alleles at the QTL on 2AL and 2DS,and high TGW and grain size alleles at QTL on 3AL;whereas G97380A contributed high TGW and grain size alleles at the QTL on 2AL and 2DS,respectively,and the high KNS allele at the 4BS QTL.Combining QFhb.hwwg-2DS with positive alleles for spike and grain traits from other chromosomes may simultaneously improve FHB resistance and grain yield in new cultivars.展开更多
Thaumatin-like proteins (TLPs) play potential roles in plant resistance to various diseases. Identifying TLPs is neces-sary to determine their function and apply them to plant disease resistance. However, limited info...Thaumatin-like proteins (TLPs) play potential roles in plant resistance to various diseases. Identifying TLPs is neces-sary to determine their function and apply them to plant disease resistance. However, limited information is available about TLP-family genes in wheat, especially regarding their responses to Fusarium species, which cause Fusarium head blight in wheat. In this study, we conducted a comprehensive genome-wide survey of TLP genes in wheat and identified 129 TLP genes in the wheat genome, which were unevenly distributed on 21 wheat chromosomes, with 5A containing the highest number. Phylogenetic analysis showed that these 129 wheat TLP genes together with 24 Arabidopsis TLPs were classified into 7 groups based on the protein sequences. We systematically analyzed the genes in terms of their sequence characterization, chromosomal locations, exon-intron distribution, duplication (tandem and segmental) events and expression profiles in response to Fusarium infection. Furthermore, we analyzed differen-tially expressed TLP genes based on publicly available RNA-seq data obtained from a resistant near isogenic wheat line at different time points after Fusarium graminearum inoculation. Then, the expression of 9 differentially expressed TLP genes was confirmed by real-time PCR, and these 9 genes were all upregulated in the resistant Sumai 3 variety, which was generally consistent with the RNA-seq data. Our results provide a basis for selecting candidate wheat TLP genes for further studies to determine the biological functions of the TLP genes in wheat.展开更多
赤霉病(Fusarium head blight,FHB)是小麦最主要的病害之一,严重影响小麦生产安全和食品安全,研究小麦赤霉病抗性机理对于解决小麦赤霉病这一世界性难题具有重要意义。根据对赤霉病的抗性表现形式,将小麦赤霉病抗性分为五个大类,分别为...赤霉病(Fusarium head blight,FHB)是小麦最主要的病害之一,严重影响小麦生产安全和食品安全,研究小麦赤霉病抗性机理对于解决小麦赤霉病这一世界性难题具有重要意义。根据对赤霉病的抗性表现形式,将小麦赤霉病抗性分为五个大类,分别为抗侵入(Type I)、抗扩展(Type II)、籽粒抗感染(Type III)、耐病性(TypeⅣ)和抗毒素积累(Type V)。小麦赤霉病的抗性机理可以分为形态机制和生理机制,形态抗性机制是被动的,株高、抽穗期、花期长短、花药挤出程度、有芒无芒、穗长、穗密度、颖壳张开程度和穗部蜡质程度等形态特征均可能与赤霉病抗侵染特性有关。细胞学研究表明,病原菌侵染后抗病品种可迅速从细胞结构和生理生化方面产生防卫反应,通过乳突、胞壁沉积物的形成以及木质素、硫堇、富含羟脯氨酸糖蛋白和水解酶类等的增长来协同抵御病菌在体内的扩展。在植物复杂的信号途径中,水杨酸(SA)、茉莉酸(JA)和乙烯(ET)3种信号途径在植物抵御病原菌入侵中的作用最为重要,SA和ET信号途径对小麦赤霉病抗性方面的作用目前还存在一定争议,而JA信号途径在小麦赤霉病抗性中积极作用已经被多数研究者所证实。迄今为止,人类定位了200个以上不同类型的抗赤霉病QTL位点,这些位点分布于所有的小麦染色体,其中的22个QTL位点被不同的作图群体所定位,包括2个定位在3BS和6BS染色体上稳定的抗扩展位点Fhb1和Fhb2,以及2个定位在4B和5A染色体上的抗侵染位点Fhb4和Fhb5。在受到病原菌侵染后,植物会产生一系列复杂的信号途径激活应答反应,诱导抗病相关基因的表达,进而引起蛋白以及代谢水平的变化,抵御病原菌的侵袭,研究表明,病程相关蛋白基因、抗菌肽基因、转录因子基因、脱毒相关蛋白基因以及其他赤霉病抗性相关基因均参与了小麦赤霉病抗性提高的过程。随着生物工程技术和生物信息技术的迅猛发展,将来可利用图位克隆技术分离抗赤霉病主效基因,并在全基因组关联分析和各种组学技术的基础上,从全基因组和基因调控网络水平上研究小麦赤霉病抗性机理,以期在更深层次上理解小麦赤霉病的抗性机理。展开更多
基金financially supported by the National Key Research and Development Program of China (2017YFD0101000)International Scientific and Technological Cooperation Project (2016YFE0108600)Agricultural Science and Technology Innovation Program of CAAS
文摘The objective of this paper is to review progress made in wheat breeding for Fusarium head blight(FHB) resistance in China, the United States of America(USA), and Canada. In China,numerous Chinese landraces possessing high levels of FHB resistance were grown before the 1950 s. Later, pyramiding multiple sources of FHB resistance from introduced germplasm such as Mentana and Funo and locally adapted cultivars played a key role in combining satisfactory FHB resistance and high yield potential in commercial cultivars.Sumai 3, a Chinese spring wheat cultivar, became a major source of FHB resistance in the USA and Canada, and contributed to the release of more than 20 modern cultivars used for wheat production, including the leading hard spring wheat cultivars Alsen, Glenn, Barlow and SY Ingmar from North Dakota, Faller and Prosper from Minnesota, and AAC Brandon from Canada. Brazilian wheat cultivar Frontana, T. dicoccoides and other local germplasm provided additional sources of resistance. The FHB resistant cultivars mostly relied on stepwise accumulation of favorable alleles of both genes for FHB resistance and high yield,with marker-assisted selection being a valuable complement to phenotypic selection. With the Chinese Spring reference genome decoded and resistance gene Fhb1 now cloned, new genomic tools such as genomic selection and gene editing will be available to breeders, thus opening new possibilities for development of FHB resistant cultivars.
基金supported by the National Natural Science Foundation of China(31901544 and 2071999)the National Key Research and Development Program of China(2017YFD0100801)。
文摘Fusarium head blight(FHB)is one of the most detrimental wheat diseases which greatly decreases the yield and grain quality,especially in the middle and lower reaches of the Yangtze River of China.Fhb1 and Fhb2 are two major resistance loci against Fusarium graminearum.Yangmai 15(YM15)is one of the most popular varieties in the middle and lower reaches of the Yangtze River,and it has good weak gluten characters but poor resistance to FHB.Here we used Fhb1 and Fhb2 to improve the FHB resistance of YM15 by a molecular marker-assisted selection(MAS)backcrossing strategy.The selection of agronomic traits was performed for each generation.We successfully selected seven introgressed lines which carry homozygous Fhb1 and Fhb2 with significantly higher FHB resistance than the recurrent parent YM15.Three of the introgressed lines had agronomic and quality characters that were similar to YM15.This study demonstrates that the pyramiding of Fhb1 and Fhb2 could significantly improve the FHB resistance in wheat using the MAS approach.
基金funded by the Research Council of Lithuania,grant No.DOTSUT-218(01.2.2-LMT-K-718-01-0065)。
文摘Bread wheat(Triticum aestiuum L.),which provides about 20%of daily calorie intake,is the most widely cultivated crop in the world,in terms of total area devoted to its cultivation.Therefore,even small increases in wheat yield can translate into large gains.Reducing the gap between actual and potential grain yield in wheat is a crucial task to feed the increasing world population.Fusarium head blight(FHB)caused by the pathogenic fungus Fusaium graminearum and related Fusarium species is one of the most devastating wheat diseases throughout the world.This disease reduces not only the yield but also the quality by contaminating the grain with mycotoxins harmful for humans,animals and the environment.In recent years,remarkable achievements attained in omics"technologies have not only provided new insights into understanding of processes involved in pathogenesis but also helped develop effective new tools for practical plant breeding.Sequencing of the genomes of various wheat patho gens,including F.graminearum,as well as those of bread and durum wheat and their wild relatives,together with advances made in transcriptomics and bioinformatics,has allowed the identification of candidate pathogen effectors and corresponding host resistance(R)and susceptibility(S)genes.However,so far,FHB effectors and wheat susceptibility genes/factors have been poorly studied.In this paper,we first briefly highlighted recent examples of improving resistance against pathogens via new techniques in different host species.We then propose effective strategies towards developing wheat cultivars with improved resistance to FHB.We hope that the article will spur discussions and interest among researchers about novel approaches with great potential for improving wheat against FHB.
基金Supported by the Study Abroad Foundation of Shanxi Province,China( 2010048)CGIAR Challenge Program Project ( GCP) ( G7010.02.01-7)Special Foundation for Talent Introduction And Development of Shanxi Province,China ( 2011)
文摘[ Objective] The study aimed to discuss the relation of leaf stomatal traits to yield and drought resistance of wheat. [ Method] Using the DH population of wheat cultivar Hanxuanl0/Lumai14 as the test object, the relation of leaf stomatal density (SD), length (SL) and width ( SW), stomatal conductance (g,), photosynthetic rate ( Pn ), transpiration rate ( Tr) to grain yield per plant and index of drought resistance (IDR) on the 10th and 20t" day after anthesis under the conditions of drought stress and normal irrigation were discussed by the methods of correlation analysis and path analysis. [ Result] Under the two water conditions, the correlations of these stomatal traits with yield components and IDR were mostly not significant on the 10t" day after anthesis, but there were significantly positive correlations between thousand kernel weight (TKW) and these traits on the 20^th day after anthesis. Path analysis showed that g,, Pn and Tt, were main factors affecting yield per plant (YPP) and IDR, and they had stron- ger direct effects on YPP and IDR, while their indirect interaction was also strong. The direct effects of SD, SL and SW on YPP and IDR were small, as well as their indirect action among SD, SL and SW. On the other hand, the correlations between SD and SL were significant, and the correlations of SL with SW, gn, P, and Tt, were extremely significant on the 10th and 20th day after anthesis under the two water conditions. However, the correlations of SD and SL with g,, P,, and Tr changed with water conditions or growth stages, showing that water conditions or growth stages had great effects on the correlations between two traits. Therefore, it is not always a good means to improve stomatal conductance, photosynthetic rate and transpiration rate and hence promote wheat yield by selecting stomatal density and size. [ Conclusion] The research could provide scientific references for revealing the roles of leaf stomatal traits in wheat breeding for drought resistance.
基金the U.S.Wheat and Barley Scab Initiative and the National Research Initiative Competitive Grants(2022-68013-36439)from the National Institute of Food and Agriculture,U.S.Department of Agriculture(USDA).
文摘Wheat resistance to Fusarium head blight(FHB)has often been associated with some undesirable agronomic traits.To study the relationship between wheat FHB resistance and agronomic traits,we constructed a linkage map of single nucleotide polymorphisms(SNPs)using an F6:8 population from G97252WG97380A.The two hard winter wheat parents showed contrasts in FHB resistance,plant height(HT),heading date(HD),spike length(SL),spike compactness(SC),kernel number per spike(KNS),spikelet number per spike(SNS),thousand-grain weight(TGW)and grain size(length and width).Quantitative trait locus(QTL)mapping identified one major QTL(QFhb.hwwg-2DS)on chromosome arm 2DS for the percentage of symptomatic spikelets(PSS)in the spike,deoxynivalenol(DON)content and Fusarium damaged kernel(FDK).This QTL explained up to 71.8%of the phenotypic variation for the three FHB-related traits and overlapped with the major QTL for HT,HD,SL,KNS,SNS,TGW,and grain size.QTL on chromosome arms 2AL,2DS,3AL and 4BS were significant for the spike and grain traits measured.G97252W contributed FHB resistance and high SNS alleles at QFhb.hwwg-2DS,high KNS alleles at the QTL on 2AL and 2DS,and high TGW and grain size alleles at QTL on 3AL;whereas G97380A contributed high TGW and grain size alleles at the QTL on 2AL and 2DS,respectively,and the high KNS allele at the 4BS QTL.Combining QFhb.hwwg-2DS with positive alleles for spike and grain traits from other chromosomes may simultaneously improve FHB resistance and grain yield in new cultivars.
基金supported partially by the National Key Project for the Research and Development of China(2017YFE0126700)Jiangsu Agricultural Science and Technology Innovation Fund(CX(21)3109)Jiangsu seed Industry Revitalization Project(JBGS(2021)052).
文摘Thaumatin-like proteins (TLPs) play potential roles in plant resistance to various diseases. Identifying TLPs is neces-sary to determine their function and apply them to plant disease resistance. However, limited information is available about TLP-family genes in wheat, especially regarding their responses to Fusarium species, which cause Fusarium head blight in wheat. In this study, we conducted a comprehensive genome-wide survey of TLP genes in wheat and identified 129 TLP genes in the wheat genome, which were unevenly distributed on 21 wheat chromosomes, with 5A containing the highest number. Phylogenetic analysis showed that these 129 wheat TLP genes together with 24 Arabidopsis TLPs were classified into 7 groups based on the protein sequences. We systematically analyzed the genes in terms of their sequence characterization, chromosomal locations, exon-intron distribution, duplication (tandem and segmental) events and expression profiles in response to Fusarium infection. Furthermore, we analyzed differen-tially expressed TLP genes based on publicly available RNA-seq data obtained from a resistant near isogenic wheat line at different time points after Fusarium graminearum inoculation. Then, the expression of 9 differentially expressed TLP genes was confirmed by real-time PCR, and these 9 genes were all upregulated in the resistant Sumai 3 variety, which was generally consistent with the RNA-seq data. Our results provide a basis for selecting candidate wheat TLP genes for further studies to determine the biological functions of the TLP genes in wheat.