Wheat is the second most important cereal in Kenya. However, production is severely constrained by both abiotic and biotic stresses. Of the biotic stresses a devastating pest (Russian wheat aphid (RWA)) and a serious ...Wheat is the second most important cereal in Kenya. However, production is severely constrained by both abiotic and biotic stresses. Of the biotic stresses a devastating pest (Russian wheat aphid (RWA)) and a serious disease (stem rust race TTKS (“Ug99”)) are currently the biggest problem for wheat producers in Kenya. Severe infestations by RWA may result in yield losses of up to 90% while “Ug99” infected fields may suffer 100% crop loss. The two pests combined are seriously affecting wheat farmers’ incomes because of the heavy reliance on pesticides that increase the cost of production. This study attempted to develop and characterize wheat lines that are resistant to both RWA and “Ug99” by pyramiding two major resistance genes. Three wheat varieties: “Kwale”, a Kenyan high yielding variety but susceptible to both RWA and “Ug99”;“Cook”, an Australian variety carrying stem rust resistance gene Sr36 conferring immunity to “Ug99”;and “KRWA9”, a Kenyan line with resistance to RWA but of poor agronomic attributes were used. A double cross F1 (DC F1) was obtained by crossing the F1 of “Kwale × Cook” and the F1 of “Kwale × KRWA9”. The DC F1 population was subjected to sequential screening for both RWA and “Ug99” resistance. Surviving DC F1 progenies were left to self pollinate to obtain the F2 of the double cross (DC F2). The DC F2 progenies were sequentially screened against RWA and “Ug99” to yield a population that was resistant to both RWA and “Ug99”. Genotyping of the DC F2:3 families were conducted to select homozygous resistant plants. Data indicated that the RWA and “Ug99” resistance genes were successfully pyramided. Though races with virulence for Sr36 have been reported, the gene provides immunity to race “Ug99” and can still be effectively used as a component for “Ug99” resistance breeding together with other Sr genes.展开更多
InKenya, Russian wheat aphid (RWA) and stem rust race TTKS (“Ug99”) are the most devastating pests of wheat. Severe infestations by RWA result in yield losses of up to 90% while epidemics of “Ug99”can cause up to ...InKenya, Russian wheat aphid (RWA) and stem rust race TTKS (“Ug99”) are the most devastating pests of wheat. Severe infestations by RWA result in yield losses of up to 90% while epidemics of “Ug99”can cause up to 100% loss. The two pests combined have seriously affected farmer incomes forcing them to rely heavily on pesticides and increasing the cost of production. This study sought to evaluate a wheat line that has been developed to be resistant to both RWA and “Ug99”by pyramiding two major resistance genes. Three varieties were used in this study: “Kwale”, a Kenyan high yielding commercial variety but susceptible to both RWA and “Ug99”;“Cook”, an Australian variety carrying stem rust resistance gene Sr36 conferring immunity to “Ug99”;and “KRWA9”, a Kenyan line resistant to RWA but with poor agronomic attributes. The F1 of the double cross (DC F1) was obtained by crossing the F1 of “Kwale × Cook” and the F1 of “Kwale × KRWA9”. The DC F1 population was subjected to sequential screening for both RWA and “Ug99”resistance. The surviving DC F1 progenies were left to self pollinate in the field to obtain the DC F2. The DC F2 progenies were sequentially screened against RWA and “Ug99”to obtain a resistant population to both RWA and “Ug99”. The yield and yield components of the new resistant line were compared with the three parents. Results showed that the DC F2:3 had higher yields than the three parents based on 1000 kernel weight, weight of kernel per spike, and the actual yield in tons/ha, indicating that the genes were successfully introgressed. It is concluded that though races with virulence for Sr36 have been reported, the gene provides immunity to race “Ug99”and can be used as a component for “Ug99”resistance breeding together with other Sr genes.展开更多
Wheat along with rice and maize is fulfilling half of the calories demands of the world. Global Wheat production has increased tremendously since green revolution in 1960’s and helped in minimizing hunger and malnutr...Wheat along with rice and maize is fulfilling half of the calories demands of the world. Global Wheat production has increased tremendously since green revolution in 1960’s and helped in minimizing hunger and malnutrition. Developing countries, which consume 60% of the global wheat production, have shown a higher yield increase than the developed countries in the past [1]. It was driven by the hunger prevalence in these countries and was attributable to the introduction of high yielding and rusted resistant semi dwarf varieties developed under the collaborative efforts of International and National research systems during the last 50 years. Whereas, climate change and the emergence of new pests and diseases are threatening the food sustainability. The evolution of new races of disease pathogens like stem rust (Ug 99) is of serious concern. In order to feed the ever increasing population we have to increase wheat production at the rate 1.6% which can be achieved by developing high yielding varieties having a good tolerance level for biotic and abiotic stresses.展开更多
Wheat stem rust, caused by Puccinia graminis f. sp. tritici(Pgt), is a potentially devastating fungal disease of wheat worldwide. The present study was to evaluate the resistance of 42 wheat monogenic lines with known...Wheat stem rust, caused by Puccinia graminis f. sp. tritici(Pgt), is a potentially devastating fungal disease of wheat worldwide. The present study was to evaluate the resistance of 42 wheat monogenic lines with known stem rust resistance(Sr) genes and 69 wheat cultivars to three new Pgt races(34C0MRGQM, 34C3MKGQM, and 34C6MTGSM)identified from aeciospores at the seedling and adult-plant stages. The phenotyping results revealed that monogenic lines harboring resistance genes Sr9e, Sr17, Sr21, Sr22, Sr26, Sr30, Sr31, Sr33, Sr35, Sr36, Sr37, Sr38, Sr47, SrTmp,and SrTt3 were effectively resistant to all three Pgt races at the seedling and adult-plant stages. In contrast, monogenic lines containing Sr5, Sr6, Sr7b, Sr9a, Sr9d, Sr9f, Sr9g, Sr9b, Sr16, Sr24, Sr28, and Sr39 were highly susceptible to these races at both seedling and adult-plant stages. The other lines with Sr8a, Sr10, Sr11, Sr13, Sr14, Sr15, Sr18, Sr20,Sr19, Sr23, Sr25, Sr27, Sr29, Sr32, and Sr34, displayed variable levels of resistance to one or two of the tested races.Seedling infection types(ITs) and adult-plant infection responses(IRs) indicated that 41(59.4%) of the wheat cultivars showed high resistance to all the three races. Molecular marker analysis showed that four wheat culitvars likely carried Sr2, 20 wheat culitvars likely carried Sr31, 9 wheat culitvars likely carried Sr38, and none of the cultivars carried Sr24,Sr25, and Sr26. Our results provide a scientific basis for rational utilization of the tested Sr genes and wheat cultivars against these novel Pgt races.展开更多
文摘Wheat is the second most important cereal in Kenya. However, production is severely constrained by both abiotic and biotic stresses. Of the biotic stresses a devastating pest (Russian wheat aphid (RWA)) and a serious disease (stem rust race TTKS (“Ug99”)) are currently the biggest problem for wheat producers in Kenya. Severe infestations by RWA may result in yield losses of up to 90% while “Ug99” infected fields may suffer 100% crop loss. The two pests combined are seriously affecting wheat farmers’ incomes because of the heavy reliance on pesticides that increase the cost of production. This study attempted to develop and characterize wheat lines that are resistant to both RWA and “Ug99” by pyramiding two major resistance genes. Three wheat varieties: “Kwale”, a Kenyan high yielding variety but susceptible to both RWA and “Ug99”;“Cook”, an Australian variety carrying stem rust resistance gene Sr36 conferring immunity to “Ug99”;and “KRWA9”, a Kenyan line with resistance to RWA but of poor agronomic attributes were used. A double cross F1 (DC F1) was obtained by crossing the F1 of “Kwale × Cook” and the F1 of “Kwale × KRWA9”. The DC F1 population was subjected to sequential screening for both RWA and “Ug99” resistance. Surviving DC F1 progenies were left to self pollinate to obtain the F2 of the double cross (DC F2). The DC F2 progenies were sequentially screened against RWA and “Ug99” to yield a population that was resistant to both RWA and “Ug99”. Genotyping of the DC F2:3 families were conducted to select homozygous resistant plants. Data indicated that the RWA and “Ug99” resistance genes were successfully pyramided. Though races with virulence for Sr36 have been reported, the gene provides immunity to race “Ug99” and can still be effectively used as a component for “Ug99” resistance breeding together with other Sr genes.
文摘InKenya, Russian wheat aphid (RWA) and stem rust race TTKS (“Ug99”) are the most devastating pests of wheat. Severe infestations by RWA result in yield losses of up to 90% while epidemics of “Ug99”can cause up to 100% loss. The two pests combined have seriously affected farmer incomes forcing them to rely heavily on pesticides and increasing the cost of production. This study sought to evaluate a wheat line that has been developed to be resistant to both RWA and “Ug99”by pyramiding two major resistance genes. Three varieties were used in this study: “Kwale”, a Kenyan high yielding commercial variety but susceptible to both RWA and “Ug99”;“Cook”, an Australian variety carrying stem rust resistance gene Sr36 conferring immunity to “Ug99”;and “KRWA9”, a Kenyan line resistant to RWA but with poor agronomic attributes. The F1 of the double cross (DC F1) was obtained by crossing the F1 of “Kwale × Cook” and the F1 of “Kwale × KRWA9”. The DC F1 population was subjected to sequential screening for both RWA and “Ug99”resistance. The surviving DC F1 progenies were left to self pollinate in the field to obtain the DC F2. The DC F2 progenies were sequentially screened against RWA and “Ug99”to obtain a resistant population to both RWA and “Ug99”. The yield and yield components of the new resistant line were compared with the three parents. Results showed that the DC F2:3 had higher yields than the three parents based on 1000 kernel weight, weight of kernel per spike, and the actual yield in tons/ha, indicating that the genes were successfully introgressed. It is concluded that though races with virulence for Sr36 have been reported, the gene provides immunity to race “Ug99”and can be used as a component for “Ug99”resistance breeding together with other Sr genes.
文摘Wheat along with rice and maize is fulfilling half of the calories demands of the world. Global Wheat production has increased tremendously since green revolution in 1960’s and helped in minimizing hunger and malnutrition. Developing countries, which consume 60% of the global wheat production, have shown a higher yield increase than the developed countries in the past [1]. It was driven by the hunger prevalence in these countries and was attributable to the introduction of high yielding and rusted resistant semi dwarf varieties developed under the collaborative efforts of International and National research systems during the last 50 years. Whereas, climate change and the emergence of new pests and diseases are threatening the food sustainability. The evolution of new races of disease pathogens like stem rust (Ug 99) is of serious concern. In order to feed the ever increasing population we have to increase wheat production at the rate 1.6% which can be achieved by developing high yielding varieties having a good tolerance level for biotic and abiotic stresses.
文摘Wheat stem rust, caused by Puccinia graminis f. sp. tritici(Pgt), is a potentially devastating fungal disease of wheat worldwide. The present study was to evaluate the resistance of 42 wheat monogenic lines with known stem rust resistance(Sr) genes and 69 wheat cultivars to three new Pgt races(34C0MRGQM, 34C3MKGQM, and 34C6MTGSM)identified from aeciospores at the seedling and adult-plant stages. The phenotyping results revealed that monogenic lines harboring resistance genes Sr9e, Sr17, Sr21, Sr22, Sr26, Sr30, Sr31, Sr33, Sr35, Sr36, Sr37, Sr38, Sr47, SrTmp,and SrTt3 were effectively resistant to all three Pgt races at the seedling and adult-plant stages. In contrast, monogenic lines containing Sr5, Sr6, Sr7b, Sr9a, Sr9d, Sr9f, Sr9g, Sr9b, Sr16, Sr24, Sr28, and Sr39 were highly susceptible to these races at both seedling and adult-plant stages. The other lines with Sr8a, Sr10, Sr11, Sr13, Sr14, Sr15, Sr18, Sr20,Sr19, Sr23, Sr25, Sr27, Sr29, Sr32, and Sr34, displayed variable levels of resistance to one or two of the tested races.Seedling infection types(ITs) and adult-plant infection responses(IRs) indicated that 41(59.4%) of the wheat cultivars showed high resistance to all the three races. Molecular marker analysis showed that four wheat culitvars likely carried Sr2, 20 wheat culitvars likely carried Sr31, 9 wheat culitvars likely carried Sr38, and none of the cultivars carried Sr24,Sr25, and Sr26. Our results provide a scientific basis for rational utilization of the tested Sr genes and wheat cultivars against these novel Pgt races.