To investigate the effect of high molecular weight glutenin subunits (HMW-GS) 5+10 inhigh quality spring wheat, four near-isogenic lines (NILs) developed by 6 consecutivebackcrosses sharing the same genetic background...To investigate the effect of high molecular weight glutenin subunits (HMW-GS) 5+10 inhigh quality spring wheat, four near-isogenic lines (NILs) developed by 6 consecutivebackcrosses sharing the same genetic background and differing only at the Glu-D1 locusin each pair were employed in this study. The results showed that gluten indexes were allincreased by 3.1-27.7% (P<0.01) after the 5+10 subunits introduced into the fourcultivars. Their stability time was increased by 128, 104, 233 and 36%, where the maximumresistance raised by 130, 56.04, 95.10 and 16.33% in Kefeng6, Longmai20, Longfumai10and Xiaobingmai33, respectively.展开更多
To determine the effect of 6 + 8 and 1.5 + 10 HMW-GS of synthetic hexaploid wheat (SHW) on main quality parameters of wheat, a set of recombinant inbred lines (RILs) derived from the cross between a SHW with N,...To determine the effect of 6 + 8 and 1.5 + 10 HMW-GS of synthetic hexaploid wheat (SHW) on main quality parameters of wheat, a set of recombinant inbred lines (RILs) derived from the cross between a SHW with N, 6 + 8, 1.5 + 10 HMW-GS and a cultivar Chuanyu 12-1 (CY 12-1) with 1, 7 + 8, 2 + 12 were planted in three environments in 2005 and 2006 and totally 16 quality parameters were tested for each line. Significant differences in all tested quality parameters but flour yield were observed between the two parents. The mean values of the RILs were intermediate to the parents for grain and protein parameters and some farinograph parameters, flour water absorption (FWA), and farinograph softening (SOF) but beyond parents at dough stability time (DST), breakdown time (BRT), quality number (QN), noodle score (NS), and loaf volume (LOV). All of the quality traits, especially in grain hardness (GH), zeleny sedimentation volume (SED), and most of farinograph parameters had significant difference between the different HMW-GS components. The effects of different alleles of HMW-GS at same locus (Glu-A1 or Glu-B1 or GIu-D1) on the different quality parameters were also different and affected by the other two loci. For most of parameters tested, 6 + 8 was better than 7 + 8 and there was no difference between 1.5 + 10 and 2 + 12. End-use quality was greatly influenced by components of HMW-GS. The components of 1, 6 + 8, 1.5 + 10 had the highest LOV and bread score (BS) values, whereas the components of 1, 7+ 8 and 1.5 + 10 had the highest NS values. Noodle score performed a positive linear relationship with falling number (FN) and its relationships to other quality parameters were affected by environments. Loaf volume had a significant negative relationship to SOF and positive associations with most of quality parameters. It could be concluded that HMW-GS 6+ 8 from SHW had better overall quality characteristics than 7 + 8, whereas the effects of 1.5 + 10 on quality was different in respect to quality parameters and the HMW-GS components. Synthetic hexaploid wheat with subunits 6 + 8 and 1.5 + 10 had the potentials to improve the end-use quality of wheat cultivars.展开更多
The accumulation of protein fractions was analyzed on developing and mature wheat grains of three cultivars differing in protein content and baking quality. There was a slight difference in the accumulation of cytopla...The accumulation of protein fractions was analyzed on developing and mature wheat grains of three cultivars differing in protein content and baking quality. There was a slight difference in the accumulation of cytoplasmic proteins in the cultivars used. The high yield but low protein cultivar showed a consistent decline of protein content during grain filling but the high - protein cultivars increased their psotein contant after 25 days post-anthcsis. The accumulation of storage proteins was different from that of cytoplasmic protein, and there were also cultivar variations. However, all cultivars reached their, maximum-synthesizing capacity for storage proteins at maturity. The relationship between the protein fractions or their ratio and baking quality was also discussed.展开更多
The composition of high molecular weight glutenin subunits( HMW-GS) was analyzed using SDS-PAGE with 70 Longdong dryland winter wheat germplasm resources as experimental materials.The results showed that Longdong dryl...The composition of high molecular weight glutenin subunits( HMW-GS) was analyzed using SDS-PAGE with 70 Longdong dryland winter wheat germplasm resources as experimental materials.The results showed that Longdong dryland winter wheat germplasm resources had N,7 + 8,2 + 12 as the dominant HMW-GS composition( 42.86%),while the dominant HMW-GS composition in the introduced germplasms was N,7 + 9,2 + 12( 36.84%).On the Glu-B1 locus of Longdong dryland germplasms,subunit 7 + 8 had the highest frequency,accounting for 65.71%,and on the Glu-B1 locus of the introduced germplasms,subunit7 + 9 had the highest frequency,accounting for 57.89%.Whether subunit 7 + 8 is related to drought resistance in varieties still needs further study.On Glu-D1 locus,high-quality subunit 5 + 10 appeared in the introduced resources for 5 times,accounting for 13.16% of all the introduced lines,and appeared in Longdong dryland winter wheat germplasm resources for 2 times,only accounting for 2.86% of all the resources,suggesting that Longdong dryland germplasms lack high-quality subunits and need further improvement.展开更多
The high molecular weight glutenin subunits (HMW-GS) 7+8 were introduced into the Long 97–586 (1,7,2+12) wheat variety (Triticum aestivum) by 5 consecutive backcrosses with biochemical marker–assisted selection.Near...The high molecular weight glutenin subunits (HMW-GS) 7+8 were introduced into the Long 97–586 (1,7,2+12) wheat variety (Triticum aestivum) by 5 consecutive backcrosses with biochemical marker–assisted selection.Nearly isogenic lines (NILs) of HMW-GS 7 and 7+8 were obtained,and the NILs were planted in the experimental field at the Crop Breeding Institute of Heilongjiang Academy of Agricultural Science in 2004–2006.The field experiments were designed using the two-column contrast arrangement method with six replicates in 2004–2005 and four replicates in 2006.The result of three years experiments showed that the differences between NILs of Long 97–586 with subunit 7 and those with subunits 7+8 in the quality parameters of flour protein content and dry gluten content were negligible (P】0.1).However,the differences in some of the quality parameters were remarkably significant (P【0.01),including wet gluten content,ratio of wet gluten/dry gluten,gluten index,Zeleny sedimentation,ratio of sedimentation/dry gluten,and the farinogram parameters of water absorption,development time,stability,breakdown time and degree of softening.The difference between NILs with subunits 7+8 and subunit 7 was significant (P【0.05) on the alveogram W value and had a critical value (P=0.05) on the alveogram P value in 2006.The results show that HMW-GS 7+8 is far superior to HMW-GS 7 in terms of baking quality.The possibilities of using subunits 7+8 and subunit 7 in breeding strong and weak gluten wheat varieties are discussed in this paper.展开更多
High-molecular-weight glutenin subunits(HMW-GSs) play a critical role in determining the viscoelastic properties of wheat dough. The HMW-GSs are encoded by Glu-A1, Glu-B1, and Glu-D1 loci on the long arms of chromos...High-molecular-weight glutenin subunits(HMW-GSs) play a critical role in determining the viscoelastic properties of wheat dough. The HMW-GSs are encoded by Glu-A1, Glu-B1, and Glu-D1 loci on the long arms of chromosomes 1A, 1B, and 1D, respectively. In the present study, four near-isogenic lines with different HMW-GS deletions and compositions at the Glu-A1 and Glu-D1 loci in Yangmai 18 background were used for quality analysis. Deletion in Glu-D1 showed much weaker gluten quality and dough strength than null Glu-A1 genotype and wild genotype(WT), based on the measurements of sodium dodecyl sulfate(SDS)-sedimentation, lactic acid solvent retention capacity(SRC), gluten index, development time, stability time, and alveograph P and L values. The deletion of Glu-D1 did not significantly affect grain hardness, grain protein content, water SRC, sodium carbonate SRC, and sucrose SRC. Double null genotype in Glu-A1 and Glu-D1 and single null genotype in Glu-D1 showed significantly higher cookie diameter, crispness, and lower cookie height compared with single null genotype in Glu-A1 and WT. These indicate that the null Glu-D1 genotype is useful for improvement of biscuit quality, and use of this germplasm would be a viable strategy to develop new wheat varieties for biscuit processing.展开更多
Exploring novel high molecular weight glutenin subunits(HMW-GSs)from wild related species is a strategy to improve wheat processing quality.The objective of the present investigation was to identify the chromosomes of...Exploring novel high molecular weight glutenin subunits(HMW-GSs)from wild related species is a strategy to improve wheat processing quality.The objective of the present investigation was to identify the chromosomes of the wheatalien introgression line N124,derived from the hybridization between Triticum aestivum with Aegilops kotschyi,and characterize the effects on quality-related traits.Fluorescence in situ hybridization karyotypes showed that N124 is a disomic 1U^(k)(1A)substitution line.Sodium dodecyl sulfate polyacrylamide gel electrophoresis(SDS-PAGE)and reversedphase high-performance liquid chromatography verified N124 expressed two HMW-GSs of the Ae.kotschyi parent.PacBio RNA sequencing and phylogenetic analysis confirmed that the two HMW-GSs were U^(k)x and U^(k)y.Compared to the wheat parent,the substitution line had no obvious agronomic defects except fewer grains per spike but improved several major quality parameters.It can be served as a donor or bridge material for wheat quality improvement.展开更多
基金financially supported by the National Natural Science Foundation of China(39770461)the Science and Technology Department of Heilongjiang Province,China.
文摘To investigate the effect of high molecular weight glutenin subunits (HMW-GS) 5+10 inhigh quality spring wheat, four near-isogenic lines (NILs) developed by 6 consecutivebackcrosses sharing the same genetic background and differing only at the Glu-D1 locusin each pair were employed in this study. The results showed that gluten indexes were allincreased by 3.1-27.7% (P<0.01) after the 5+10 subunits introduced into the fourcultivars. Their stability time was increased by 128, 104, 233 and 36%, where the maximumresistance raised by 130, 56.04, 95.10 and 16.33% in Kefeng6, Longmai20, Longfumai10and Xiaobingmai33, respectively.
基金the Sichuan Provincial Youth Foundation (04ZQ026-009)National 863 Pro-gram of China (2006AA10Z1C6)+1 种基金National Natural Science Foundation of China (30771338)Na-tional Key Technology R&D Program of China(2006BAD01A02, 2006BAD13B02)
文摘To determine the effect of 6 + 8 and 1.5 + 10 HMW-GS of synthetic hexaploid wheat (SHW) on main quality parameters of wheat, a set of recombinant inbred lines (RILs) derived from the cross between a SHW with N, 6 + 8, 1.5 + 10 HMW-GS and a cultivar Chuanyu 12-1 (CY 12-1) with 1, 7 + 8, 2 + 12 were planted in three environments in 2005 and 2006 and totally 16 quality parameters were tested for each line. Significant differences in all tested quality parameters but flour yield were observed between the two parents. The mean values of the RILs were intermediate to the parents for grain and protein parameters and some farinograph parameters, flour water absorption (FWA), and farinograph softening (SOF) but beyond parents at dough stability time (DST), breakdown time (BRT), quality number (QN), noodle score (NS), and loaf volume (LOV). All of the quality traits, especially in grain hardness (GH), zeleny sedimentation volume (SED), and most of farinograph parameters had significant difference between the different HMW-GS components. The effects of different alleles of HMW-GS at same locus (Glu-A1 or Glu-B1 or GIu-D1) on the different quality parameters were also different and affected by the other two loci. For most of parameters tested, 6 + 8 was better than 7 + 8 and there was no difference between 1.5 + 10 and 2 + 12. End-use quality was greatly influenced by components of HMW-GS. The components of 1, 6 + 8, 1.5 + 10 had the highest LOV and bread score (BS) values, whereas the components of 1, 7+ 8 and 1.5 + 10 had the highest NS values. Noodle score performed a positive linear relationship with falling number (FN) and its relationships to other quality parameters were affected by environments. Loaf volume had a significant negative relationship to SOF and positive associations with most of quality parameters. It could be concluded that HMW-GS 6+ 8 from SHW had better overall quality characteristics than 7 + 8, whereas the effects of 1.5 + 10 on quality was different in respect to quality parameters and the HMW-GS components. Synthetic hexaploid wheat with subunits 6 + 8 and 1.5 + 10 had the potentials to improve the end-use quality of wheat cultivars.
文摘The accumulation of protein fractions was analyzed on developing and mature wheat grains of three cultivars differing in protein content and baking quality. There was a slight difference in the accumulation of cytoplasmic proteins in the cultivars used. The high yield but low protein cultivar showed a consistent decline of protein content during grain filling but the high - protein cultivars increased their psotein contant after 25 days post-anthcsis. The accumulation of storage proteins was different from that of cytoplasmic protein, and there were also cultivar variations. However, all cultivars reached their, maximum-synthesizing capacity for storage proteins at maturity. The relationship between the protein fractions or their ratio and baking quality was also discussed.
基金Supported by the Gansu Dryland Winter Wheat Germplasm Innovation and Application Engineering Research Center
文摘The composition of high molecular weight glutenin subunits( HMW-GS) was analyzed using SDS-PAGE with 70 Longdong dryland winter wheat germplasm resources as experimental materials.The results showed that Longdong dryland winter wheat germplasm resources had N,7 + 8,2 + 12 as the dominant HMW-GS composition( 42.86%),while the dominant HMW-GS composition in the introduced germplasms was N,7 + 9,2 + 12( 36.84%).On the Glu-B1 locus of Longdong dryland germplasms,subunit 7 + 8 had the highest frequency,accounting for 65.71%,and on the Glu-B1 locus of the introduced germplasms,subunit7 + 9 had the highest frequency,accounting for 57.89%.Whether subunit 7 + 8 is related to drought resistance in varieties still needs further study.On Glu-D1 locus,high-quality subunit 5 + 10 appeared in the introduced resources for 5 times,accounting for 13.16% of all the introduced lines,and appeared in Longdong dryland winter wheat germplasm resources for 2 times,only accounting for 2.86% of all the resources,suggesting that Longdong dryland germplasms lack high-quality subunits and need further improvement.
基金supported by the National Natural Science Foundation of China (Grant No. 30170577)Science and Technology Department of Heilongjiang Province (Grant No. GC04B111)
文摘The high molecular weight glutenin subunits (HMW-GS) 7+8 were introduced into the Long 97–586 (1,7,2+12) wheat variety (Triticum aestivum) by 5 consecutive backcrosses with biochemical marker–assisted selection.Nearly isogenic lines (NILs) of HMW-GS 7 and 7+8 were obtained,and the NILs were planted in the experimental field at the Crop Breeding Institute of Heilongjiang Academy of Agricultural Science in 2004–2006.The field experiments were designed using the two-column contrast arrangement method with six replicates in 2004–2005 and four replicates in 2006.The result of three years experiments showed that the differences between NILs of Long 97–586 with subunit 7 and those with subunits 7+8 in the quality parameters of flour protein content and dry gluten content were negligible (P】0.1).However,the differences in some of the quality parameters were remarkably significant (P【0.01),including wet gluten content,ratio of wet gluten/dry gluten,gluten index,Zeleny sedimentation,ratio of sedimentation/dry gluten,and the farinogram parameters of water absorption,development time,stability,breakdown time and degree of softening.The difference between NILs with subunits 7+8 and subunit 7 was significant (P【0.05) on the alveogram W value and had a critical value (P=0.05) on the alveogram P value in 2006.The results show that HMW-GS 7+8 is far superior to HMW-GS 7 in terms of baking quality.The possibilities of using subunits 7+8 and subunit 7 in breeding strong and weak gluten wheat varieties are discussed in this paper.
基金supported by the Independent Innovation Funding for Agricultural Science and Technology of Jiangsu Province, China (CX(13)5070)the Natural Science Foundation of Jiangsu Province, China (BK20160448)the earmarked fund for China Agriculture Research System (CARS-03)
文摘High-molecular-weight glutenin subunits(HMW-GSs) play a critical role in determining the viscoelastic properties of wheat dough. The HMW-GSs are encoded by Glu-A1, Glu-B1, and Glu-D1 loci on the long arms of chromosomes 1A, 1B, and 1D, respectively. In the present study, four near-isogenic lines with different HMW-GS deletions and compositions at the Glu-A1 and Glu-D1 loci in Yangmai 18 background were used for quality analysis. Deletion in Glu-D1 showed much weaker gluten quality and dough strength than null Glu-A1 genotype and wild genotype(WT), based on the measurements of sodium dodecyl sulfate(SDS)-sedimentation, lactic acid solvent retention capacity(SRC), gluten index, development time, stability time, and alveograph P and L values. The deletion of Glu-D1 did not significantly affect grain hardness, grain protein content, water SRC, sodium carbonate SRC, and sucrose SRC. Double null genotype in Glu-A1 and Glu-D1 and single null genotype in Glu-D1 showed significantly higher cookie diameter, crispness, and lower cookie height compared with single null genotype in Glu-A1 and WT. These indicate that the null Glu-D1 genotype is useful for improvement of biscuit quality, and use of this germplasm would be a viable strategy to develop new wheat varieties for biscuit processing.
基金supported by the National Natural Science Foundation of China(91935303)the Sichuan Province Science and Technology Department Crops Breeding Project,China(2021YFYZ0002)+1 种基金the Crop Molecular Breeding Platform of Sichuan Province,China(2021YFYZ0027)the Foundation for Youth of Sichuan Academy of Agricultural Sciences and the Sichuan Provincial Agricultural Department Innovative Research Team,China(wheat-10)。
文摘Exploring novel high molecular weight glutenin subunits(HMW-GSs)from wild related species is a strategy to improve wheat processing quality.The objective of the present investigation was to identify the chromosomes of the wheatalien introgression line N124,derived from the hybridization between Triticum aestivum with Aegilops kotschyi,and characterize the effects on quality-related traits.Fluorescence in situ hybridization karyotypes showed that N124 is a disomic 1U^(k)(1A)substitution line.Sodium dodecyl sulfate polyacrylamide gel electrophoresis(SDS-PAGE)and reversedphase high-performance liquid chromatography verified N124 expressed two HMW-GSs of the Ae.kotschyi parent.PacBio RNA sequencing and phylogenetic analysis confirmed that the two HMW-GSs were U^(k)x and U^(k)y.Compared to the wheat parent,the substitution line had no obvious agronomic defects except fewer grains per spike but improved several major quality parameters.It can be served as a donor or bridge material for wheat quality improvement.