期刊文献+
共找到124篇文章
< 1 2 7 >
每页显示 20 50 100
Effect of Nitrogen Management on Yield and Water Use Efficiency of Rainfed Wheat and Maize in Northwest China 被引量:26
1
作者 DANG Ting-Hui CAI Gui-Xin +2 位作者 GUO Sheng-Li HAO Ming-De L. K. HENG 《Pedosphere》 SCIE CAS CSCD 2006年第4期495-504,共10页
A field experiment with four treatments and four replicates in a randomized complete block design was conducted at the Changwu Experimental Station in Changwu County, Shaanxi Province, of Northwest China from 1998 to ... A field experiment with four treatments and four replicates in a randomized complete block design was conducted at the Changwu Experimental Station in Changwu County, Shaanxi Province, of Northwest China from 1998 to 2002. The local cropping sequence of wheat, wheat-beans, maize, and wheat over the 4-year period was adopted. A micro-plot study using ^15N-lahelled fertilizer was carried out to determine the fate of applied N fertilizer in the first year. When N fertilizer was applied wheat (years 1, 2 and 4) and maize (year 3) grain yield increased significantly (P 〈 0.05) (〉 30%), with no significant yield differences in normal rainfall years (Years 1, 2 and 3) for N application at the commonly application rate and at 2/3 of this rate. Grain yield of wheat varied greatly between years, mainly due to variation in annual rainfall. Results of ^15N studies on wheat showed that plants recovered 36.6%-38.4% of the N applied, the N remained in soll (0-40 cm) ranged from 29.2% to 33.6%, and unaccounted-for N was 29.5%-34.2%. The following crop (wheat) recovered 2.1%- 2.8% of the residual N from N applied to the previous wheat crop with recovery generally decreasing in the subsequent three crops (beans, maize and wheat). 展开更多
关键词 wheat MAIZE ^15N studies water use efficiency YIELD
下载PDF
Effects of Different Tillage Systems on Soil Properties,Root Growth,Grain Yield,and Water Use Efficiency of Winter Wheat (Triticum aestivum L.) in Arid Northwest China 被引量:33
2
作者 HUANG Gao-bao CHAI Qiang +1 位作者 FENG Fu-xue YU Ai-zhong 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2012年第8期1286-1296,共11页
Studies on root development, soil physical properties, grain yield, and water-use efficiency are important for identifying suitable soil management practices for sustainable crop production. A field experiment was con... Studies on root development, soil physical properties, grain yield, and water-use efficiency are important for identifying suitable soil management practices for sustainable crop production. A field experiment was conducted from 2006 through 2008 in arid northwestern China to determine the effects of four tillage systems on soil properties, root development, water-use efficiency, and grain yield of winter wheat (Triticum aestivum L.). The cultivar Fan 13 was grown under four tillage systems:conventional tillage (CT) without wheat stubble, no-tillage without wheat stubble mulching (NT), no-tillage with wheat stubble standing (NTSS), and no-tillage with wheat stubble mulching (NTS). The soil bulk density (BD) under CT system increased gradually from sowing to harvest, but that in NT, NTSS, and NTS systems had little change. Compared to the CT system, the NTSS and NTS systems improved total soil water storage (0-150 cm) by 6.1-9.6 and 10.5- 15.3% before sowing, and by 2.2-8.9 and 13.0-15.1% after harvest, respectively. The NTSS and NTS systems also increased mean dry root weight density (DRWD) as compared to CT system. The NTS system significantly improved water-use efficiency by 17.2-17.5% and crop yield by 15.6-16.8%, and the NTSS system improved that by 7.8-9.6 and 7.0-12.8%, respectively, compared with the CT system. Our results suggested that Chinese farmers should consider adopting conservation tillage practices in arid northwestern China because of benefits to soil bulk density, water storage, root system, and winter wheat yield. 展开更多
关键词 conservation tillage soil water storage bulk density water use efficiency winter wheat (Triticum aestivumL.) root system grain yield
下载PDF
Statistical Analysis of Leaf Water Use Efficiency and Physiology Traits of Winter Wheat Under Drought Condition 被引量:8
3
作者 WU Xiao-li BAO Wei-kai 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2012年第1期82-89,共8页
Five statistical methods including simple correlation, multiple linear regression, stepwise regression, principal components, and path analysis were used to explore the relationship between leaf water use efficiency ... Five statistical methods including simple correlation, multiple linear regression, stepwise regression, principal components, and path analysis were used to explore the relationship between leaf water use efficiency (WUE) and physiological traits (photosynthesis rate, stomatal conductance, transpiration rate, intercellular CO2 concentration, etc.) of 29 wheat cultivars. The results showed that photosynthesis rate, stomatal conductance, and transpiration rate were the most important leaf WUE parameters under drought condition. Based on the results of statistical analyses, principal component analysis could be the most suitable method to ascertain the relationship between leaf WUE and relative physiological traits. It is reasonable to assume that high leaf WUE wheat could be obtained by selecting breeding materials with high photosynthesis rate, low transpiration rate, and stomatal conductance under dry area. 展开更多
关键词 leaf water use efficiency multiple linear regression path analysis principal components simple correlation stepwise regression wheat genotype
下载PDF
Arbuscular mycorrhizal fungi improve biomass, photosynthesis, and water use efficiency of Opuntia ficus-indica (L.) Miller under different water levels
4
作者 Teame G KEBEDE Emiru BIRHANE +1 位作者 Kiros-Meles AYIMUT Yemane G EGZIABHER 《Journal of Arid Land》 SCIE CSCD 2023年第8期975-988,共14页
Opuntia ficus-indica(L.)Miller is a CAM(crassulacean acid metabolism)plant with an extraordinary capacity to adapt to drought stress by its ability to fix atmospheric CO_(2) at nighttime,store a significant amount of ... Opuntia ficus-indica(L.)Miller is a CAM(crassulacean acid metabolism)plant with an extraordinary capacity to adapt to drought stress by its ability to fix atmospheric CO_(2) at nighttime,store a significant amount of water in cladodes,and reduce root growth.Plants that grow in moisture-stress conditions with thick and less fine root hairs have a strong symbiosis with arbuscular mycorrhizal fungi(AMF)to adapt to drought stress.Water stress can limit plant growth and biomass production,which can be rehabilitated by AMF association through improved physiological performance.The objective of this study was to investigate the effects of AMF inoculations and variable soil water levels on the biomass,photosynthesis,and water use efficiency of the spiny and spineless O.ficus-indica.The experiment was conducted in a greenhouse with a full factorial experiment using O.ficus-indica type(spiny or spineless),AMF(presence or absence),and four soil water available(SWA)treatments through seven replications.Water treatments applied were 0%–25%SWA(T1),25%–50%SWA(T2),50%–75%SWA(T3),and 75%–100%SWA(T4).Drought stress reduced biomass and cladode growth,while AMF colonization significantly increased the biomass production with significant changes in the physiological performance of O.ficus-indica.AMF presence significantly increased biomass of both O.ficus-indica plant types through improved growth,photosynthetic water use efficiency,and photosynthesis.The presence of spines on the surface of cladodes significantly reduced the rate of photosynthesis and photosynthetic water use efficiency.Net photosynthesis,photosynthetic water use efficiency,transpiration,and stomatal conductance rate significantly decreased with increased drought stress.Under drought stress,some planted mother cladodes with the absence of AMF have not established daughter cladodes,whereas AMF-inoculated mother cladodes fully established daughter cladodes.AMF root colonization significantly increased with the decrease of SWA.AMF caused an increase in biomass production,increased tolerance to drought stress,and improved photosynthesis and water use efficiency performance of O.ficus-indica.The potential of O.ficus-indica to adapt to drought stress is controlled by the morpho-physiological performance related to AMF association. 展开更多
关键词 BIOMASS cactus pear cladode growth photosynthesis water stress water use efficiency
下载PDF
Balanced Fertilization and the Effect of Fertilization on Water Use Efficiency of Upland Winter Wheat in Western Henan, China
5
作者 LI GUIBAO LIU CHUNMING +4 位作者 SUN KEGANG BAO DEJUN ZHANG GUILAN LEI QUANKUI YAO YUQING and BU LIJIE (Soil and Fertilizer Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002 China)(Luoyang Institute of Agricultural Sciencea, Luoyang 471022 Ch 《Pedosphere》 SCIE CAS CSCD 1998年第4期361-366,共6页
A study on balanced fertilization was conducted by means of long-term field experiments, and a convenient table for balanced fertilization was compiled. The experimental results about the effect of fertilization on wa... A study on balanced fertilization was conducted by means of long-term field experiments, and a convenient table for balanced fertilization was compiled. The experimental results about the effect of fertilization on water use efficiency of upland wheat showed that the input of inorganic fertilizer should be reduced in dry years. 展开更多
关键词 balanced fertilization UPLAND water use efficiency wheat
下载PDF
Improvement of Water Use Efficiency in Winter Wheat byBreeding Lines with Low Rate of Water Loss of Excised-Leaves
6
作者 MA Rui-kun, JIA Xiu-ling and ZHANG Quan-guo(Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050031 , P. R. China) 《Agricultural Sciences in China》 CAS CSCD 2002年第12期1310-1316,共7页
A study was conducted with the objective of improvement of water use efficiency (WUE) and yield of winter wheat for Lowland Dryland Farming systems through a breeding approach. Various genotypes were screened in 1988 ... A study was conducted with the objective of improvement of water use efficiency (WUE) and yield of winter wheat for Lowland Dryland Farming systems through a breeding approach. Various genotypes were screened in 1988 for rate of water loss of excised leaves (RWL) , followed by inter-crossing of diverse parents in 1993. Analysis of the relationship between RWL and yield components and plant traits demonstrated significant differences in RWL among genotypes. Under most circumstances, RWL was correlated negatively with yield and grain weight, and positively with plant height. The results demonstrated a basis for simultaneous selection for high yield and low RWL. It was found that genotypic rank varied with the duration of water loss. Correlation between RWL and yield was reduced by extended water loss duration. Analysis of the genetic variation and segregation of RWL of progenies and the effect of simultaneous screening for RWL and agronomic traits showed that good lines with improved yield and water use performance could be obtained. 展开更多
关键词 wheat (Triticum aestivum) water use efficiency Excised-leaf water loss rate BREEDING
下载PDF
Canopy morphological changes and water use efficiency in winter wheat under different irrigation treatments 被引量:6
7
作者 ZHAO Hong-xiang ZHANG Ping +3 位作者 WANG Yuan-yuan NING Tang-yuan XU Cai-long WANG Pu 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2020年第4期1105-1116,共12页
Water is a key limiting factor in agriculture. Water resource shortages have become a serious threat to global food security. The development of water-saving irrigation techniques based on crop requirements is an impo... Water is a key limiting factor in agriculture. Water resource shortages have become a serious threat to global food security. The development of water-saving irrigation techniques based on crop requirements is an important strategy to resolve water scarcity in arid and semi-arid regions. In this study, field experiments with winter wheat were performed at Wuqiao Experiment Station, China Agricultural University in two growing seasons in 2013-2015 to help develop such techniques. Three irrigation treatments were tested: no-irrigation(i.e., no water applied after sowing), limited-irrigation(i.e., 60 mm of water applied at jointing), and sufficient-irrigation(i.e., a total of 180 mm of water applied with 60 mm at turning green, jointing and anthesis stages, respectively). Leaf area index(LAI), light transmittance(LT), leaf angle(LA), transpiration rate(Tr), specific leaf weight, water use efficiency(WUE), and grain yield of winter wheat were measured. The highest WUE of wheat in the irrigated treatments was found under limited-irrigation and grain yield was only reduced by a small amount in this treatment compared to the sufficient irrigation treatment. The LAI and LA of wheat plants was lower under limited irrigation than sufficient irrigation, but canopy LT was greater. Moreover, the specific leaf weight of winter wheat was significantly lower under sufficient than limited irrigation conditions, while the leaf Tr was significantly higher. Correlation analysis showed that the increased LAI was associated with an increase in the leaf Tr, but the specific leaf weight had the opposite relationship with transpiration. Optimum WUE occurred over a reasonable range in leaf Tr. In conclusion, reduced irrigation can optimize wheat canopies and regulate water consumption, with only small reductions in final yield, ultimately leading to higher wheat WUE and water saving in arid and semi-arid regions. 展开更多
关键词 WINTER wheat limited-irrigation CANOPY characteristics TRANSPIRATION rate water use efficiency
下载PDF
Exogenous application of glycine betaine improved water use efficiency in winter wheat(Triticum aestivum L.) via modulating photosynthetic efficiency and antioxidative capacity under conventional and limited irrigation conditions 被引量:4
8
作者 Nazir Ahmed Yushi Zhang +3 位作者 Ke Li Yuyi Zhou Mingcai Zhang Zhaohu Li 《The Crop Journal》 SCIE CAS CSCD 2019年第5期635-650,共16页
Improving water use efficiency(WUE)is an important subject in agricultural irrigation for alleviating the scarcity of water resources in semiarid regions of the North China Plain.Moreover,glycine betaine(GB)is one of ... Improving water use efficiency(WUE)is an important subject in agricultural irrigation for alleviating the scarcity of water resources in semiarid regions of the North China Plain.Moreover,glycine betaine(GB)is one of the most effective compatible solutes synthesized naturally in plants for enhancing stress tolerance under abiotic stress,but little information is available on the involvement of GB in regulating crop WUE under field conditions.This study was conducted to explore the role of exogenously applied GB in improving WUE and plant physiological and biochemical responses inwinterwheat subjected to conventional or limited irrigation during the 2015–2016 and 2016–2017 growing seasons.Exogenous application of GB significantly enhanced antioxidant enzyme activities and reduced the accumulation ofmalondialdehyde and hydrogen peroxide under limited irrigation conditions.Furthermore,GB-treated plantsmaintained higher leaf relative water content andmembrane stability,which led to higher chlorophyll content and gas exchange attributes for better intrinsic and instantaneouswater use efficiencies compared to control plants under limited irrigation conditions.GB-treated plants had higher indole-acetic acid and zeatin riboside levels but lower ABA levels compared to control plants under conventional and limited irrigation conditions.Additionally,GB enhanced the grain filling rate and duration,grain number per spike,and final grainweight,which resulted in higher grain yield compared to the control.Interestingly,GB significantly improved the integrative and photosynthetic WUE under conventional and limited irrigation conditions,although GB treatment did not markedly affect total water consumption.These results suggest the involvement of GB in improving WUEs in winter wheat by modulating hormonal balance,membrane stability,photosynthetic performance and antioxidant systems to maintain higher grain yield under conventional and limited irrigation conditions. 展开更多
关键词 Winter wheat GLYCINE BETAINE water use efficiency Limited irrigation PHOTOSYNTHETIC performance Antioxidant systems
下载PDF
Composite Simulation of Dynamic Water Content and Water Use Efficiency of Winter Wheat
9
作者 Liming WANG 《Asian Agricultural Research》 2014年第4期79-84,共6页
In order to forecast the effect of climate warming on agriculture,ENWATBAL model was used to simulate evapotranspiration of winter wheat due to the change of air temperature and precipitation in the coming decades.The... In order to forecast the effect of climate warming on agriculture,ENWATBAL model was used to simulate evapotranspiration of winter wheat due to the change of air temperature and precipitation in the coming decades.The effect of climate warming on winter wheat yield in the future decades was speculated by the past yield and climate data in last decades,and the possible water use efficiency in the future decades was calculated.The results indicate that climate warming would increase winter wheat evapotranspiration,and decrease yield and water use efficiency of winter wheat.It shows that climate warming would intensify the water shortage in agriculture,and it is necessary to develop watersaving agriculture. 展开更多
关键词 WINTER wheat CLIMATE WARMING ENWATBAL model water
下载PDF
Species- and Habitat-variability of Photosynthesis, Transpiration and Water Use Efficiency of Different Plant Species in Maowusu Sand Area 被引量:105
10
作者 蒋高明 何维明 《Acta Botanica Sinica》 CSCD 1999年第10期1114-1124,共11页
Photosynthesis ( P n ), transpiration ( E ) and water use efficiency ( WUE ) of more than 66 arid sand species from different environmental habitats, shifting sand dune, fixed sand dune, lowland and wetland in ... Photosynthesis ( P n ), transpiration ( E ) and water use efficiency ( WUE ) of more than 66 arid sand species from different environmental habitats, shifting sand dune, fixed sand dune, lowland and wetland in the Maowusu Sand Area were analyzed and the relation among these characteristics and the resource utilization efficiency, taxonomic categories and growth forms of the species were assessed. The results showed that species from Chenopodiaceae, Gramineae, Leguminosae which possessed the C 4 photosynthesis pathway, or C 3 pathway and also with nitrogen_fixation capacities had higher or the highest P n values, i.e., 20~30 μmol CO 2·m -2 ·s -1 , while that of evergreen shrub of Pinaceae had the lowest P n values, i.e., 0~5 μmol CO 2·m -2 ·s -1 . Those species from Compositae, Scrophulariaceae, and Gramineae with C 3 pathway but no N_fixation capacity had the highest E rates, i.e., 20~30 mmol H 2O·m -2 ·s -1 and again the evergreen shrub together with some species from Salicaceae and Compositae had the lowest E rates, i.e., 0~5 mmol H 2O·m -2 ·s -1 . Species from Leguminosae, Gramineae and Chenopodiaceae with C 4 pathway or C 3 pathway with N_fixation capacity, both shrubs and grasses, generally had higher WUE . However, even the physiological traits of the same species were habitat_ and season_specific. The values of both P n and E in late summer were much higher than those in early summer, with average increases of 26%, 40% respectively in the four habitats. WUE in late summer was, however, 12% lower. Generally, when the environments became drier as a result of habitats changed, i.e., in the order of wetland, lowland, fixed sand dune and shifting sand dune, P n and E decreased but WUE increased. 展开更多
关键词 photosynthesis TRANSPIRATION water use efficiency HABITAT C 4 pathway SHRUBS Grasses Maowusu Sand Area
下载PDF
Effects of Water-Fertilizer Coupling on Growth Characteristics and Water Use Efficiency of Camellia petelotii Seedlings
11
作者 Liangyu Luo Ru Li +2 位作者 Daocheng Ma Yijin Wang Linghui Wang 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第11期2927-2947,共21页
Camellia petelotii(Merr.)Sealy is an endangered Chinese native species that originates from Guangxi Zhuang Autonomous Region,China.Previous research demonstrated that proper water and fertilizer treatments could impro... Camellia petelotii(Merr.)Sealy is an endangered Chinese native species that originates from Guangxi Zhuang Autonomous Region,China.Previous research demonstrated that proper water and fertilizer treatments could improve the growth and quality of Camellia species.This study uses a three-factor,five-level quadratic rotational combination experimental design to investigate the impact of water-fertilizer coupling on plant growth character-istics and the most suitable treatment for 24-month-old grafted C.petelotii seedlings.The experimental design includes irrigation levels[30%,40%,55%,70%,80%offield capacity(FC)],nitrogen application(0,2.17,5.43,8.70,10.87 g·plant^(-1)),and phosphorus application(0,0.96,2.40,3.85,4.81 g·plant^(-1)).The results indicated that:(1)Water-nitrogen and water-phosphorus interactions significantly affected ground diameter,chlorophyll content and specific leaf weight(SLW),while water-nitrogen interactions significantly affected plant height and photo-synthesis;(2)Application of nitrogen(8.70 g·plant^(-1))and phosphorus(3.85 g·plant^(-1))fertilizers under appropri-ate irrigation conditions(40%FC and 70%FC)improved growth.Applying fertilizers containing either nitrogen(10.87 g·plant^(-1))or phosphorus(4.81 g·plant^(-1))under adequate irrigation(55%FC)increased the Chl content.However,high nitrogen levels(10.87 g·plant^(-1))reduced photosynthesis.Conversely,it was enhanced under appropriate phosphorus(4.81 g·plant^(-1))when the irrigation level was 55%FC,indicating the sensitivity of C.pete-lotii seedlings to nitrogen fertilizer.(3)Under specific conditions of 40%FC or 70%FC irrigation and 8.70 g·plant^(-1) or 2.17 g·plant^(-1) nitrogen fertilizer application,3.85 g·plant^(-1) phosphorus addition boosted the SLW whereas,0.96 g·plant^(-1) phosphorus addition inhibited it.Under W=55%FC,deficiencies in either nitrogen(N=0 g·plant^(-1))or phosphorus(P=0 g·plant^(-1))significantly decreased leaf growth,affecting SLW.In summary,C.petelotii was more sensitive to nitrogen fertilizer at W=55%FC,and nitrogen deficiency inhibited C.petelotii growth in terms of ground diameter more than phosphorus deficiency.The C.petelotii seedlings performed best when treated with 55%FC,5.43 g·plant^(-1) nitrogen,2.40 g·plant^(-1) phosphorus per plant.These parameter esti-mates could optimize water and fertilizer application for C.petelotii seedlings. 展开更多
关键词 Camellia petelotii growth characteristics photosynthesis water-fertilizer coupling water use efficiency
下载PDF
Improving water-use efficiency by decreasing stomatal conductance and transpiration rate to maintain higher ear photosynthetic rate in drought-resistant wheat 被引量:21
12
作者 Yuping Li Hongbing Li +1 位作者 Yuanyuan Li Suiqi Zhang 《The Crop Journal》 SCIE CAS CSCD 2017年第3期231-239,共9页
In wheat, the ear is one of the main photosynthetic contributors to grain filling under drought stress conditions. In order to determine the relationship between stomatal characteristics and plant drought resistance, ... In wheat, the ear is one of the main photosynthetic contributors to grain filling under drought stress conditions. In order to determine the relationship between stomatal characteristics and plant drought resistance, photosynthetic and stomatal characteristics and water use efficiency(WUE) were studied in two wheat cultivars: the drought-resistant cultivar ‘Changhan 58' and the drought-sensitive cultivar ‘Xinong 9871'. Plants of both cultivars were grown in pot conditions under well-watered(WW) and water-stressed(WS) conditions. In both water regimes,‘Changhan 58' showed a significantly higher ear photosynthetic rate with a lower rate of variation and a significantly higher percentage variation of transpiration compared to control plants at the heading stage under WS conditions than did ‘Xinong 9871' plants. Moreover,‘Changhan 58' showed lower stomatal density(SD) and higher stomatal area per unit organ area(A) under both water conditions. Water stress decreased SD, A, and stomatal width(SW), and increased stomatal length in flag leaves(upper and lower surfaces) and ear organs(awn, glume,lemma, and palea), with the changes more pronounced in ear organs than in flag leaves.Instantaneous WUE increased slightly, while integral WUE improved significantly in both cultivars. Integral WUE was higher in ‘Changhan 58', and increased by a greater amount, than in‘Xinong 9871'. These results suggest that drought resistance in ‘Changhan 58' is regulated by stomatal characteristics through a decrease in transpiration rate in order to improve integral WUE and photosynthetic performance, and through sustaining a higher ear photosynthetic rate, therefore enhancing overall drought-resistance. 展开更多
关键词 wheat STOMATAL structure EAR photosynthesis DROUGHT resistance water use efficiency
下载PDF
Effects of water application uniformity using a center pivot on winter wheat yield, water and nitrogen use efficiency in the North China Plain 被引量:5
13
作者 CAI Dong-yu YAN Hai-jun LI Lian-hao 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2020年第9期2326-2339,共14页
In recent years, the use of fertigation technology with center pivot irrigation systems has increased rapidly in the North China Plain (NCP). The combined effects of water and nitrogen application uniformity on the gr... In recent years, the use of fertigation technology with center pivot irrigation systems has increased rapidly in the North China Plain (NCP). The combined effects of water and nitrogen application uniformity on the grain yield, water use efficiency (WUE) and nitrogen use efficiency (NUE) have become a research hotspot. In this study, a two-year field experiment was conducted during the winter wheat growing season in 2016–2018 to evaluate the water application uniformity of a center pivot with two low pressure sprinklers (the R3000 sprinklers were installed in the first span, the corresponding treatment was RS;the D3000 sprinklers were installed in the second span, the corresponding treatment was DS) and a P85A impact sprinkler as the end gun (the corresponding treatment was EG), and to analyze its effects on grain yield, WUE and NUE. The results showed that the water application uniformity coefficients of R3000, D3000 and P85A along the radial direction of the pivot (CUH) were 87.5, 79.5 and 65%, respectively. While the uniformity coefficients along the traveling direction of the pivot (CUC) were all higher than 85%. The effects of water application uniformity of the R3000 and D3000 sprinklers on grain yield were not significant (P>0.05);however, the average grain yield of EG was significantly lower (P<0.05) than those of RS and DS, by 9.4 and 11.1% during two growing seasons, respectively. The coefficients of variation (CV) of the grain yield had a negative correlation with the uniformity coefficient. The CV of WUE was more strongly affected by the water application uniformity, compared with the WUE value, among the three treatments. The NUE of RS was higher than those of DS and EG by about 6.1 and 4.8%, respectively, but there were no significant differences in NUE among the three treatments during the two growing seasons. Although the CUH of the D3000 sprinklers was lower than that of the R3000, it had only limited effects on the grain yield, WUE and NUE. However, the cost of D3000 sprinklers is lower than that of R3000 sprinklers. Therefore, the D3000 sprinklers are recommended for winter wheat irrigation and fertigation in the NCP. 展开更多
关键词 center pivot low pressure sprinkler water application uniformity winter wheat water and nitrogen use efficiency
下载PDF
Effects of deep vertical rotary tillage on the grain yield and resource use efficiency of winter wheat in the Huang-Huai-Hai Plain of China 被引量:9
14
作者 WU Fen ZHAI Li-chao +6 位作者 XU Ping ZHANG Zheng-bin Elamin Hafiz BAILLO Lemessa Negasa TOLOSA Roy Njoroge KIMOTHO JIA Xiu-ling GUO Hai-qian 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2021年第2期593-605,共13页
Tillage represents an important practice that is used to dynamically regulate soil properties,and affects the grain production process and resource use efficiency of crops.The objectives of this 3-year field study car... Tillage represents an important practice that is used to dynamically regulate soil properties,and affects the grain production process and resource use efficiency of crops.The objectives of this 3-year field study carried out in the Huang-Huai-Hai(HHH) Plain of China were to compare the effects of a new deep vertical rotary tillage (DVRT) with the conventional shallow rotary tillage (CT) on soil properties,winter wheat (Triticum aestivum L.) grain yield and water and nitrogen use efficiency at different productivity levels,and to identify a comprehensive management that optimizes both grain yield and resource use efficiency in the HHH Plain.A split-plot design was adopted in field experiments in the winter wheat growing seasons of 2016–2017 (S1),2017–2018 (S2) and 2018–2019 (S3),with DVRT (conducted once in June 2016) and CT performed in the main plots.Subplots were treated with one of four targeted productivity level treatments (SH,the super high productivity level;HH,the high productivity and high efficiency productivity level;FP,the farmer productivity level;ISP,the inherent soil productivity level).The results showed that the soil bulk density was reduced and the soil water content at the anthesis stage was increased in all three years,which were due to the significant effects of DVRT.Compared with CT,grain yields,partial factor productivity of nitrogen (PFP_(N)),and water use efficiency (WUE) under DVRT were increased by 22.0,14.5 and 19.0%.Path analysis and direct correlation decomposition uncovered that grain yield variation of winter wheat was mostly contributed by the spike numbers per area under different tillage modes.General line model analysis revealed that tillage mode played a significant role on grain yield,PFP_(N) and WUE not only as a single factor,but also along with other factors(year and productivity level) in interaction manners.In addition,PFP_(N) and WUE were the highest in HH under DVRT in all three growth seasons.These results provided a theoretical basis and technical support for coordinating the high yield with high resource use efficiency of winter wheat in the resource-restricted region in the HHH Plain of China. 展开更多
关键词 winter wheat deep vertical rotary tillage resource use efficiency water use efficiency partial factor productivity of nitrogen
下载PDF
Grain yield and water use of winter wheat as affected by water and sulfur supply in the North China Plain 被引量:7
15
作者 XIE Ying-xin ZHANG Hui +6 位作者 ZHU Yun-ji ZHAO Li YANG Jia-heng CHA Fei-na LIU Cao WANG Chen-yang GUO Tian-cai 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第3期614-625,共12页
Water shortage has threatened sustainable development of agriculture globally as well as in the North China Plain(NCP).Irrigation,as the most effective way to increase food production in dry land,may not be readily ... Water shortage has threatened sustainable development of agriculture globally as well as in the North China Plain(NCP).Irrigation,as the most effective way to increase food production in dry land,may not be readily available in the situation of drought.One of the alternatives is to supply plants with enough nutrients so that they can be more sustainable to the water stress.The objective of this study was to explore effects of irrigation and sulphur(S)application on water consumption,dry matter accumulation(DMA),and grain yield of winter wheat in NCP.Three irrigation regimes including no irrigation(rainfed,I0)during the whole growth period,once irrigation only at jointing stage(90 mm,I1),and twice respective irrigation at jointing and anthesis stages(90 mm plus 90 mm,I2),and two levels of S application including 0S0and 60 kg ha^–1(S60)were designed in the field experiment in NCP.Results showed that increasing irrigation times significantly increased mean grain yield of wheat by 12.5–23.7%and nitrogen partial factor productivity(NPFP)by 21.2–45.0%in two wheat seasons,but markedly decreased crop water use efficiency(YWUE).Furthermore,S supply 60 kg ha^–1 significantly increased mean grain yield,YWUE,IWUE and NPFP by 5.6,6.1,23.2,and 5.6%(across two wheat seasons),respectively.However,we also found that role of soil moisture prior to S application was one of important greater factors on improving the absorption and utilization of storage water and nutrients of soil.Thus,water supply is still the most important factor to restrict the growth of wheat in the present case of NCP,supplying 60 kg ha^–1 S with once irrigation 90 mm at the jointing stage is a relatively appropriate recommended combination to improve grain yield and WUE of wheat when saving water resources is be considered in irrigated wheat farmlands of NCP. 展开更多
关键词 SULPHUR irrigation winter wheat grain yield water use efficiency 1
下载PDF
Yield and water use responses of winter wheat to irrigation and nitrogen application in the North China Plain 被引量:15
16
作者 ZHANG Ming-ming DONG Bao-di +4 位作者 QIAO Yun-zhou SHI Chang-hai YANG Hong WANG Ya-kai LIU Meng-yu 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2018年第5期1194-1206,共13页
With increasing water shortage resources and extravagant nitrogen application, there is an urgent need to optimize irrigation regimes and nitrogen management for winter wheat(Triticum aestivum L.) in the North China... With increasing water shortage resources and extravagant nitrogen application, there is an urgent need to optimize irrigation regimes and nitrogen management for winter wheat(Triticum aestivum L.) in the North China Plain(NCP). A 4-year field experiment was conducted to evaluate the effect of three irrigation levels(W1, irrigation once at jointing stage; W2, irrigation once at jointing and once at heading stage; W3, irrigation once at jointing, once at heading, and once at filling stage; 60 mm each irrigation) and four N fertilizer rates(N0, 0; N1, 100 kg N ha-(-1); N2, 200 kg N ha-(-1); N3, 300 kg N ha-(-1)) on wheat yield, water use efficiency, fertilizer agronomic efficiency, and economic benefits. The results showed that wheat yield under W2 condition was similar to that under W3, and greater than that under W1 at the same nitrogen level. Yield with the N1 treatment was higher than that with the N0 treatment, but not significantly different from that obtained with the N2 and N3 treatments. The W2 N1 treatment resulted in the highest water use and fertilizer agronomic efficiencies. Compared with local traditional practice(W3 N3), the net income and output-input ratio of W2 N1 were greater by 12.3 and 19.5%, respectively. These findings suggest that two irrigation events of 60 mm each coupled with application of 100 kg N ha-(–1) is sufficient to provide a high wheat yield during drought growing seasons in the NCP. 展开更多
关键词 winter wheat irrigation regime nitrogen application grain yield water use efficiency
下载PDF
Water transport and water use efficiency differ among Populus euphratica Oliv. saplings exposed to saline water irrigation
17
作者 ZHOU Honghua CHEN Yaning +2 位作者 ZHU Chenggang YANG Yuhai YE Zhaoxia 《Journal of Arid Land》 SCIE CSCD 2019年第6期866-879,共14页
Populus euphratica Oliv.is a unique woody tree that can be utilized for vegetation restoration in arid and semi-arid areas.The effects of saline water irrigation(0.00, 2.93, 8.78 and 17.55 g/L NaCl solutions) on water... Populus euphratica Oliv.is a unique woody tree that can be utilized for vegetation restoration in arid and semi-arid areas.The effects of saline water irrigation(0.00, 2.93, 8.78 and 17.55 g/L NaCl solutions) on water transport and water use efficiency(WUE) of P.euphratica saplings were researched for improving the survival of P.euphratica saplings and vegetation restoration in arid and semi-arid areas of Xinjiang, China in 2011.Results showed that hydraulic conductivity and vulnerability to cavitation of P.euphratica saplings were more sensitive in root xylem than in twig xylem when irrigation water salinity increased.Irrigation with saline water concentration less than 8.78 g/L did not affect the growth of P.euphratica saplings, under which they maintained normal water transport in twig xylem through adjustment of anatomical structure of vessels and kept higher WUE and photosynthesis in leaves through adjustment of stomata.However, irrigation with saline water concentration up to 17.55 g/L severely inhibited the photochemical process and WUE of P.euphratica saplings, resulting in severe water-deficit in leaves and a sharp reduction in water transport in xylem.Thus, it is feasible to irrigate P.euphratica forest by using saline groundwater for improving the survival of P.euphratica saplings and vegetation restoration in arid and semi-arid areas of Xinjiang, China. 展开更多
关键词 photosynthesis photochemical process water use efficiency hydraulic conductivity cavitation resistance
下载PDF
Cereal-forage crop rotations and irrigation treatment effect on water use efficiency and crops sustainability in Mediterranean environment
18
作者 Pasquale Martiniello 《Agricultural Sciences》 2012年第1期44-57,共14页
Agricultural systems based on crop rotations favour sustainability of cultivation and productivity of the crops. Wheat-forage crops rotations (annual winter binary mixture and perennial alfalfa meadow) combined with i... Agricultural systems based on crop rotations favour sustainability of cultivation and productivity of the crops. Wheat-forage crops rotations (annual winter binary mixture and perennial alfalfa meadow) combined with irrigation are the agronomical techniques able to better exploit the weather resources in Mediterranean environments. The experiment aimed to study the effect of 18 years of combined effect of irrigation and continuous durum wheat and wheat-forage rotations on productivities of crops and organic matter of topsoil. The experiments were established through 1991-2008 under rainfed and irrigated treatments and emphasized on the effect of irrigation and continuous wheat and wheat-forage crop rotations on water use efficiency and sustainability of organic matter. The effect of irrigation increased 49.1% and 66.9% the dry matter of mixture and meadow, respectively. Continuous wheat rotation reduced seed yield, stability of production, crude protein characteristics of kernel and soil organic matter. The yearly gain in wheat after forage crops was 0.04 t (ha·yr)-1 under rainfed and 0.07 t (ha·yr)-1 under irrigation treatments. The crude protein and soil organic matter of wheat rotations, compared to those of continuous wheat under rainfed and irrigated was increase in term of point percentage by 0.8 and 0.5 in crude protein and 5.1 and 4.4 in organic matter, respectively. The rotations of mixture and meadow under both irrigated treatments increased the point of percentage of organic matter over continuous wheat (9.3.and 8.5 in mixture and 12.5 and 9.5 meadow under rainfed and irrigation, respectively). Irrigation reduce the impact of weather on crop growing reducing water use efficiency (mean over rotations) for dry mater production (15.5 in meadow and 17.5 in mixture [L water (kg·dry·matter)-1 ]) and wheat seed yield. The effect of agronomic advantages achieved by forage crops in topsoil expire its effect after three years of continuous wheat rotation. 展开更多
关键词 Alfalfa Binary Mixture DURUM wheat IRRIGATION Mediterranean Environment Soil Organic Matter water use efficiency wheat-Forage ROTATIONS
下载PDF
Effects of grazing on net primary productivity,evapotranspiration and water use efficiency in the grasslands of Xinjiang,China 被引量:10
19
作者 HUANG Xiaotao LUO Geping +1 位作者 YE Feipeng HAN Qifei 《Journal of Arid Land》 SCIE CSCD 2018年第4期588-600,共13页
Grazing is a main human activity in the grasslands of Xinjiang, China. It is vital to identify the effects of grazing on the sustainable utilization of local grasslands. However, the effects of grazing on net primary ... Grazing is a main human activity in the grasslands of Xinjiang, China. It is vital to identify the effects of grazing on the sustainable utilization of local grasslands. However, the effects of grazing on net primary productivity (NPP), evapotranspiration (ET) and water use efficiency (WUE) in this region remain unclear. Using the spatial Biome-BGC grazing model, we explored the effects of grazing on NPP, ET and WUE across the different regions and grassland types in Xinjiang during 1979-2012. NPP, ET and WUE under the grazed scenario were generally lower than those under the ungrazed scenario, and the differences showed increasing trends over time. The decreases in NPP, ET and WUE varied significantly among the regions and grassland types. NPP decreased as follows: among the regions, Northern Xinjiang (16.60 g C/(m2·a)), Tianshan Mountains (15.94 g C/(m2·a)) and Southern Xinjiang (-3.54 g C/(m2·a)); and among the grassland types, typical grasslands (25.70 g C/(m2·a)), swamp meadows (25.26 g C/(m2·a)), mid-mountain meadows (23.39 g C/(m2·a)), alpine meadows (6.33 g C/(m2·a)), desert grasslands (5.82 g C/(m2·a)) and saline meadows (2.90 g C/(me.a)). ET decreased as follows: among the regions, Tianshan Mountains (28.95 mm/a), Northern Xinjiang (8.11 mm/a) and Southern Xinjiang (7.57 mm/a); and among the grassland types, mid-mountain meadows (29.30 mm/a), swamp meadows (25.07 mm·a), typical grasslands (24.56 mm/a), alpine meadows (20.69 mm/a), desert grasslands (11.06 mm/a) and saline meadows (3.44 mm/a). WUE decreased as follows: among the regions, Northern Xinjiang (0.053 g C/kg H2O), Tianshan Mountains (0.034 g C/kg H2O) and Southern Xinjiang (0.012 g C/kg H2O); and among the grassland types, typical grasslands (0.0609 g C/kg H2O), swamp meadows (0.0548 g C/kg H2O), mid-mountain meadows (0.0501 g C/kg H2O), desert grasslands (0.0172 g C/kg H2O), alpine meadows (0.0121 g C/kg H2O) and saline meadows (0.0067 g C/kg H2O). In general, the decreases in NPP and WUE were more significant in the regions with relatively high levels of vegetation growth because of the high grazing intensity in these regions. The decreases in ET were significant in mountainous areas due to the terrain and high grazing intensity. 展开更多
关键词 grazing effect grassland type net primary productivity EVAPOTRANSPIRATION water use efficiency BiomeBGC grazing model
下载PDF
Layering Precision Land Leveling and Furrow Irrigated Raised Bed Planting: Productivity and Input Use Efficiency of Irrigated Bread Wheat in Indo-Gangetic Plains 被引量:6
20
作者 M. L. Jat Raj Gupta +1 位作者 Y. S. Saharawat Raj Khosla 《American Journal of Plant Sciences》 2011年第4期578-588,共11页
Stagnating yield and declining input use efficiency in irrigated wheat of the Indo-Gangetic Plain (IGP) coupled with diminishing availability of water for agriculture is a major concern of food security in South Asia.... Stagnating yield and declining input use efficiency in irrigated wheat of the Indo-Gangetic Plain (IGP) coupled with diminishing availability of water for agriculture is a major concern of food security in South Asia. The objective of our study was to establish an understanding of how wheat yield and input use efficiency can be improved and how land leveling and crop establishment practices can be modified to be more efficient in water use through layering of precision-conservation crop management techniques. The “precision land leveling with raised bed” planting can be used to improve crop yield, water and nutrient use efficiency over the existing “traditional land leveling with flat” planting practices. We conducted a field experiment during 2002-2004 at Modipuram, India to quantify the benefits of alternate land leveling (precision land leveling) and crop establishment (furrow irrigated raised bed planting) techniques alone or in combination (layering precision-conservation) in terms of crop yield, water savings, and nutrient use efficiency of wheat production in IGP. The wheat yield was about 16.6% higher with nearly 50% less irrigation water with layering precision land leveling and raised bed planting compared to traditional practices (traditional land leveling with flat planting). The agronomic (AE) and uptake efficiency (UE) of N, P and K were significantly improved under precision land leveling with raised bed planting technique compared to other practices. 展开更多
关键词 Precision Land Leveling FURROW IRRIGATED Raised BED PLANTING Input use efficiency IRRIGATED Bread wheat water PRODUCTIVITY Uptake efficiency Agronomic efficiency
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部