Purpose–This study aims to investigate the cause of high-order wheel polygonization in a plateau high-speed electric multiple unit(EMU)train.Design/methodology/approach–A series of field tests were conducted to meas...Purpose–This study aims to investigate the cause of high-order wheel polygonization in a plateau high-speed electric multiple unit(EMU)train.Design/methodology/approach–A series of field tests were conducted to measure the vibration accelerations of the axle box and bogie when the wheels of the EMU train passed through tracks with normal rail roughness after re-profiling.Additionally,the dynamic characteristics of the track,wheelset and bogie were also measured.These measurements provided insights into the mechanisms that lead to wheel polygonization.Findings–The results of the field tests indicate that wheel polygonal wear in theEMUtrain primarily exhibits 14–16 and 25–27 harmonic orders.The passing frequencies of wheel polygonization were approximately 283–323 Hz and 505–545 Hz,which closely match the dominated frequencies of axle box and bogie vibrations.These findings suggest that the fixed-frequency vibrations originate from the natural modes of the wheelset and bogie,which can be excited by wheel/rail irregularities.Originality/value–The study provides novel insights into the mechanisms of high-order wheel polygonization in plateau high-speed EMU trains.Futher,the results indicate that operating the EMU train on mixed lines at variable speeds could potentially mitigate high-order polygonal wear,providing practical value for improving the safety,performance and maintenance efficiency of high-speed EMU trains.展开更多
Wheel polygonal wear is a common and severe defect,which seriously threatens the running safety and reliability of a railway vehicle especially a locomotive.Due to non-stationary running conditions(e.g.,traction and b...Wheel polygonal wear is a common and severe defect,which seriously threatens the running safety and reliability of a railway vehicle especially a locomotive.Due to non-stationary running conditions(e.g.,traction and braking)of the locomotive,the passing frequencies of a polygonal wheel will exhibit time-varying behaviors,which makes it too difficult to effectively detect the wheel defect.Moreover,most existing methods only achieve qualitative fault diagnosis and they cannot accurately identify defect levels.To address these issues,this paper reports a novel quantitative method for fault detection of wheel polygonization under non-stationary conditions based on a recently proposed adaptive chirp mode decomposition(ACMD)approach.Firstly,a coarse-to-fine method based on the time–frequency ridge detection and ACMD is developed to accurately estimate a time-varying gear meshing frequency and thus obtain a wheel rotating frequency from a vibration acceleration signal of a motor.After the rotating frequency is obtained,signal resampling and order analysis techniques are applied to an acceleration signal of an axle box to identify harmonic orders related to polygonal wear.Finally,the ACMD is combined with an inertial algorithm to estimate polygonal wear amplitudes.Not only a dynamics simulation but a field test was carried out to show that the proposed method can effectively detect both harmonic orders and their amplitudes of the wheel polygonization under non-stationary conditions.展开更多
Wheel polygonal wear can immensely worsen wheel/rail interactions and vibration performances of the train and track,and ultimately,lead to the shortening of service life of railway components.At present,wheel/rail med...Wheel polygonal wear can immensely worsen wheel/rail interactions and vibration performances of the train and track,and ultimately,lead to the shortening of service life of railway components.At present,wheel/rail medium-or high-frequency frictional interactions are perceived as an essential reason of the high-order polygonal wear of railway wheels,which are potentially resulted by the flexible deformations of the train/track system or other external excitations.In this work,the effect of wheel/rail flexibility on polygonal wear evolution of heavy-haul locomotive wheels is explored with aid of the long-term wheel polygonal wear evolution simulations,in which different flexible modeling of the heavy-haul wheel/rail coupled system is implemented.Further,the mitigation measures for the polygonal wear of heavy-haul locomotive wheels are discussed.The results point out that the evolution of polygonal wear of heavy-haul locomotive wheels can be veritably simulated with consideration of the flexible effect of both wheelset and rails.Execution of mixed-line operation of heavy-haul trains and application of multicut wheel re-profiling can effectively reduce the development of wheel polygonal wear.This research can provide a deep-going understanding of polygonal wear evolution mechanism of heavy-haul locomotive wheels and its mitigation measures.展开更多
基金the Sichuan Science and Technology Program of China(No.2024NSFSC0160).
文摘Purpose–This study aims to investigate the cause of high-order wheel polygonization in a plateau high-speed electric multiple unit(EMU)train.Design/methodology/approach–A series of field tests were conducted to measure the vibration accelerations of the axle box and bogie when the wheels of the EMU train passed through tracks with normal rail roughness after re-profiling.Additionally,the dynamic characteristics of the track,wheelset and bogie were also measured.These measurements provided insights into the mechanisms that lead to wheel polygonization.Findings–The results of the field tests indicate that wheel polygonal wear in theEMUtrain primarily exhibits 14–16 and 25–27 harmonic orders.The passing frequencies of wheel polygonization were approximately 283–323 Hz and 505–545 Hz,which closely match the dominated frequencies of axle box and bogie vibrations.These findings suggest that the fixed-frequency vibrations originate from the natural modes of the wheelset and bogie,which can be excited by wheel/rail irregularities.Originality/value–The study provides novel insights into the mechanisms of high-order wheel polygonization in plateau high-speed EMU trains.Futher,the results indicate that operating the EMU train on mixed lines at variable speeds could potentially mitigate high-order polygonal wear,providing practical value for improving the safety,performance and maintenance efficiency of high-speed EMU trains.
基金This work is supported by the National Natural Science Foundation of China(Grant Nos.52005416,51735012,and 51825504)the Sichuan Science and Technology Program(Grant No.2020YJ0213)+1 种基金the Fundamental Research Funds for the Central Universities,SWJTU(Grant No.2682021CX091)the State Key Laboratory of Traction Power(Grant No.2020TPL-T 11).
文摘Wheel polygonal wear is a common and severe defect,which seriously threatens the running safety and reliability of a railway vehicle especially a locomotive.Due to non-stationary running conditions(e.g.,traction and braking)of the locomotive,the passing frequencies of a polygonal wheel will exhibit time-varying behaviors,which makes it too difficult to effectively detect the wheel defect.Moreover,most existing methods only achieve qualitative fault diagnosis and they cannot accurately identify defect levels.To address these issues,this paper reports a novel quantitative method for fault detection of wheel polygonization under non-stationary conditions based on a recently proposed adaptive chirp mode decomposition(ACMD)approach.Firstly,a coarse-to-fine method based on the time–frequency ridge detection and ACMD is developed to accurately estimate a time-varying gear meshing frequency and thus obtain a wheel rotating frequency from a vibration acceleration signal of a motor.After the rotating frequency is obtained,signal resampling and order analysis techniques are applied to an acceleration signal of an axle box to identify harmonic orders related to polygonal wear.Finally,the ACMD is combined with an inertial algorithm to estimate polygonal wear amplitudes.Not only a dynamics simulation but a field test was carried out to show that the proposed method can effectively detect both harmonic orders and their amplitudes of the wheel polygonization under non-stationary conditions.
基金Supported by National Natural Science Foundation of China(Grant Nos.U2268210,52302474,52072249).
文摘Wheel polygonal wear can immensely worsen wheel/rail interactions and vibration performances of the train and track,and ultimately,lead to the shortening of service life of railway components.At present,wheel/rail medium-or high-frequency frictional interactions are perceived as an essential reason of the high-order polygonal wear of railway wheels,which are potentially resulted by the flexible deformations of the train/track system or other external excitations.In this work,the effect of wheel/rail flexibility on polygonal wear evolution of heavy-haul locomotive wheels is explored with aid of the long-term wheel polygonal wear evolution simulations,in which different flexible modeling of the heavy-haul wheel/rail coupled system is implemented.Further,the mitigation measures for the polygonal wear of heavy-haul locomotive wheels are discussed.The results point out that the evolution of polygonal wear of heavy-haul locomotive wheels can be veritably simulated with consideration of the flexible effect of both wheelset and rails.Execution of mixed-line operation of heavy-haul trains and application of multicut wheel re-profiling can effectively reduce the development of wheel polygonal wear.This research can provide a deep-going understanding of polygonal wear evolution mechanism of heavy-haul locomotive wheels and its mitigation measures.