The wheel-rail adhesion control for regenerative braking systems of high speed electric multiple unit trains is crucial to maintaining the stability,improving the adhesion utilization,and achieving deep energy recover...The wheel-rail adhesion control for regenerative braking systems of high speed electric multiple unit trains is crucial to maintaining the stability,improving the adhesion utilization,and achieving deep energy recovery.There remain technical challenges mainly because of the nonlinear,uncertain,and varying features of wheel-rail contact conditions.This research analyzes the torque transmitting behavior during regenerative braking,and proposes a novel methodology to detect the wheel-rail adhesion stability.Then,applications to the wheel slip prevention during braking are investigated,and the optimal slip ratio control scheme is proposed,which is based on a novel optimal reference generation of the slip ratio and a robust sliding mode control.The proposed methodology achieves the optimal braking performancewithoutthewheel-railcontactinformation.Numerical simulation results for uncertain slippery rails verify the effectiveness of the proposed methodology.展开更多
To investigate the re-adhesion and dynamic characteristics of the locomotive drive system with wheel slip controller,a co-simulation model of the train system was established by SIMPACK and MATLAB/SIMULINK.The uniform...To investigate the re-adhesion and dynamic characteristics of the locomotive drive system with wheel slip controller,a co-simulation model of the train system was established by SIMPACK and MATLAB/SIMULINK.The uniform running and starting conditions were considered,and the influence of structural stiffness of the drive system and the wheel slip controller on the re-adhesion and acceleration performance of the locomotive was investigated.The simulation results demonstrated that the stick-slip vibration is more likely to occur in locomotives with smaller structural stiffnesses during adhesion reduction and recovery processes.There are many frequency components in the vibration acceleration spectrum of the drive system,because the longitudinal and rotational vibrations of the wheelset are coupled by the wheel‒rail tangential force when stick-slip vibration occurs.In general,increasing the structural stiffness of the drive system and reducing the input energy in time are effective measures to suppress stick-slip vibration.It should also be noted that inappropriate matching of the wheel slip controller and drive system parameters may lead to electro-mechanical coupling vibration of the drive system,resulting in traction force fluctuation and poor acceleration performance.展开更多
The existing research on dynamics and slip ratio of wheeled mobile robot (WMR) are derived without considering the effect of height, and the existing models can not be used to analyze the dynamics performance of the...The existing research on dynamics and slip ratio of wheeled mobile robot (WMR) are derived without considering the effect of height, and the existing models can not be used to analyze the dynamics performance of the robot with variable height while moving such as NOROS- Ⅱ. The existing method of dynamics modeling is improved by adding the constraint equation between perpendicular displacement of body and horizontal displacement of wheel into the constraint conditions. The dynamic model of NOROS- Ⅱ in wheel motion is built by the Lagrange method under nonholonomic constraints. The inverse dynamics is calculated in three different paths based on this model, and the results demonstrate that torques of hip pitching joints are inversely proportional to the height of robot. The relative error of calculated torques is less than 2% compared with that of ADAMS simulation, by which the validity of dynamic model is verified, Moreover, the relative horizontal motion between fore/hind wheels and body is produced when the height is changed, and thus the accurate slip ratio can not be obtained by the traditional equation. The improved slip ratio equations with the parameter of the vertical velocity of body are introduced for fore wheels and hind wheels respectively. Numerical simulations of slip ratios are conducted to reveal the effect of varied height on slip ratios of different wheels. The result shows that the slip ratios of fore/hind wheels become larger/smaller respectively as the height increases, and as the height is reduced, the reverse applies. The proposed research of dynamic model and slip ratio based on the robot height provides the effective method to analyze the dynamics of WMRs with varying height.展开更多
The independent driving wheel system, which is composed of in-wheel permanent magnet synchronous motor(I-PMSM) and tire, is more convenient to estimate the slip ratio because the rotary speed of the rotor can be acc...The independent driving wheel system, which is composed of in-wheel permanent magnet synchronous motor(I-PMSM) and tire, is more convenient to estimate the slip ratio because the rotary speed of the rotor can be accurately measured. However, the ring speed of the tire ring doesn’t equal to the rotor speed considering the tire deformation. For this reason, a deformable tire and a detailed I-PMSM are modeled by using Matlab/Simulink. Moreover, the tire/road contact interface(a slippery road) is accurately described by the non-linear relaxation length-based model and the Magic Formula pragmatic model. Based on the relatively accurate model, the error of slip ratio estimated by the rotor rotary speed is analyzed in both time and frequency domains when a quarter car is started by the I-PMSM with a definite target torque input curve. In addition, the natural frequencies(NFs) of the driving wheel system with variable parameters are illustrated to present the relationship between the slip ratio estimation error and the NF. According to this relationship, a low-pass filter, whose cut-off frequency corresponds to the NF, is proposed to eliminate the error in the estimated slip ratio. The analysis, concerning the effect of the driving wheel parameters and road conditions on slip ratio estimation, shows that the peak estimation error can be reduced up to 75% when the LPF is adopted. The robustness and effectiveness of the LPF are therefore validated. This paper builds up the deformable tire model and the detailed I-PMSM models, and analyzes the effect of the driving wheel parameters and road conditions on slip ratio estimation.展开更多
The Udwadia-Kalaba formulation is proposed to model the dynamics of the rolling wheel. A unified approach that addresses both the slip and the stiction in the contact section is considered. Purely rolling constraints ...The Udwadia-Kalaba formulation is proposed to model the dynamics of the rolling wheel. A unified approach that addresses both the slip and the stiction in the contact section is considered. Purely rolling constraints are associated with stiction and are suitably lifted as slip occurs. An extended formulation for the Uwadia-Kalaba equations of motion is introduced for that matter. It resorts to the weighted minimum norm and the weighted semi-least-squares solutions of the constraints equations. This not only allows a bias on constraints, by an appropriate description of weight functions based on friction, it also leads to a smooth activation or deactivation of selected constraints without rewriting the equations of motion or upsetting their numerical integration.展开更多
A dynamic space coupling model is developed for simulating the vibrations of wheel/rail systems as well as the torsion and bending vibrations of wheelsets. It is found that the slip stick vibrations of wheelsets are ...A dynamic space coupling model is developed for simulating the vibrations of wheel/rail systems as well as the torsion and bending vibrations of wheelsets. It is found that the slip stick vibrations of wheelsets are mainly caused and controlled by the crossing excitation or self excitation of the vertical vibrations of the whole system and by the bending vibrations and torsion vibrations of the wheelsets. It is found for the first time that the slip stick vibrations may occur in more than one forms, and one or another of the three kinds of vibrations is excited more strongly. Four typical kinds of slip stick vibrations are enumerated and described. The field investigation on rail corrugations shows that the four kinds of slip stick vibrations are most likely to exist and related with different corrugated features.展开更多
Due to quick response and large quantity of electric motor torque,the traction wheels of battery electric vehicle are easy to slip during the initial phase of starting.In this paper,a sliding mode control approach of ...Due to quick response and large quantity of electric motor torque,the traction wheels of battery electric vehicle are easy to slip during the initial phase of starting.In this paper,a sliding mode control approach of acceleration slip regulation is designed to prevent the slip of the traction wheels.The wheel slip ratio is used as the state variable for the formulation of system dynamics model.The fuzzy algorithm is utilized to adjust the switch function of sliding mode controller.After stability and robustness analysis,the sliding mode control law is transferred into C code and downloaded into vehicle control unit,which is validated under wet and dry road conditions.The experimental results with a small overshoot and a quick response during starting indicate that the sliding mode controller has good control efect on the slip ratio regulation.This article proposes an acceleration slip regulation method that improves the safety during acceleration for battery electric vehicle.展开更多
Three major methods currently in the use of determining vehicle speed based on wheel speeds, the minimum wheel speed, minimum wheel speed corrected by slope method and the Kalman filter method, are analyzed, with meri...Three major methods currently in the use of determining vehicle speed based on wheel speeds, the minimum wheel speed, minimum wheel speed corrected by slope method and the Kalman filter method, are analyzed, with merits and defects of each approach stated. Through simulations, the Kalman filter method based on minimum wheel speed shows improved accuracy, in addition to better adaptivity to vehicle reference speed. It also can be used to acceleration ship regulation (ASR) in part-time four-wheel drive vehicles.展开更多
With the worsening of energy crisis and environmental pollution,electric vehicles with four in?wheel motors have been paid more and more attention. The main research subject is how to reasonably distribute the driving...With the worsening of energy crisis and environmental pollution,electric vehicles with four in?wheel motors have been paid more and more attention. The main research subject is how to reasonably distribute the driving torque of each wheel. Considering the longitudinal motion,lateral motion,yaw movement and rotation of the four wheels,the tire model and the seven DOF dynamic model of the vehicle are established in this paper. Then,the torque distribution method is proposed based on road adhesion margin,which can be divided into anti ? slip control layer and torque distribution layer. The anti?slip control layer is built based on sliding mode variable structure control,whose main function is to avoid the excessive slip of wheels caused by road conditions. The torque distribution layer is responsible for selecting the torque distribution method based on road adhesion margin. The simulation results show that the proposed torque distribution method can ensure the vehicle quickly adapt to current road adhesion conditions,and improve the handling stability and dynamic performance of the vehicle in the driving process.展开更多
基金supported by the National Natural Science Foundation of China(Grant 51305437)Guangdong Innovative Research Team Program of China(Grant201001D0104648280)
文摘The wheel-rail adhesion control for regenerative braking systems of high speed electric multiple unit trains is crucial to maintaining the stability,improving the adhesion utilization,and achieving deep energy recovery.There remain technical challenges mainly because of the nonlinear,uncertain,and varying features of wheel-rail contact conditions.This research analyzes the torque transmitting behavior during regenerative braking,and proposes a novel methodology to detect the wheel-rail adhesion stability.Then,applications to the wheel slip prevention during braking are investigated,and the optimal slip ratio control scheme is proposed,which is based on a novel optimal reference generation of the slip ratio and a robust sliding mode control.The proposed methodology achieves the optimal braking performancewithoutthewheel-railcontactinformation.Numerical simulation results for uncertain slippery rails verify the effectiveness of the proposed methodology.
基金the National Natural Science Foundation of China(No.U2268211)the Sichuan Provincial Natural Science Foundation(Nos.2022NSFSC0034 and 2022NSFSC1901)+1 种基金the Independent Research and Development Projects of the State Key Laboratory of Traction Power(No.2022TPL_T02)the Opening Foundation of The State Key Laboratory of Heavy Duty AC Drive Electric Locomotive Systems Integration.
文摘To investigate the re-adhesion and dynamic characteristics of the locomotive drive system with wheel slip controller,a co-simulation model of the train system was established by SIMPACK and MATLAB/SIMULINK.The uniform running and starting conditions were considered,and the influence of structural stiffness of the drive system and the wheel slip controller on the re-adhesion and acceleration performance of the locomotive was investigated.The simulation results demonstrated that the stick-slip vibration is more likely to occur in locomotives with smaller structural stiffnesses during adhesion reduction and recovery processes.There are many frequency components in the vibration acceleration spectrum of the drive system,because the longitudinal and rotational vibrations of the wheelset are coupled by the wheel‒rail tangential force when stick-slip vibration occurs.In general,increasing the structural stiffness of the drive system and reducing the input energy in time are effective measures to suppress stick-slip vibration.It should also be noted that inappropriate matching of the wheel slip controller and drive system parameters may lead to electro-mechanical coupling vibration of the drive system,resulting in traction force fluctuation and poor acceleration performance.
基金supported by National Outstanding Youth Science Foundation of China (Grant No. 51125020)National Hi-tech Research and Development Program of China (863 Program, Grant No. 2006AA04Z207)Program for New Century Excellent Talents in University, China
文摘The existing research on dynamics and slip ratio of wheeled mobile robot (WMR) are derived without considering the effect of height, and the existing models can not be used to analyze the dynamics performance of the robot with variable height while moving such as NOROS- Ⅱ. The existing method of dynamics modeling is improved by adding the constraint equation between perpendicular displacement of body and horizontal displacement of wheel into the constraint conditions. The dynamic model of NOROS- Ⅱ in wheel motion is built by the Lagrange method under nonholonomic constraints. The inverse dynamics is calculated in three different paths based on this model, and the results demonstrate that torques of hip pitching joints are inversely proportional to the height of robot. The relative error of calculated torques is less than 2% compared with that of ADAMS simulation, by which the validity of dynamic model is verified, Moreover, the relative horizontal motion between fore/hind wheels and body is produced when the height is changed, and thus the accurate slip ratio can not be obtained by the traditional equation. The improved slip ratio equations with the parameter of the vertical velocity of body are introduced for fore wheels and hind wheels respectively. Numerical simulations of slip ratios are conducted to reveal the effect of varied height on slip ratios of different wheels. The result shows that the slip ratios of fore/hind wheels become larger/smaller respectively as the height increases, and as the height is reduced, the reverse applies. The proposed research of dynamic model and slip ratio based on the robot height provides the effective method to analyze the dynamics of WMRs with varying height.
基金Supported by National Natural Science Foundation of China (Grant Nos.51275264,51275265)National Hi-tech Research and Development Program of China (Grant No.2012DFA81190)
文摘The independent driving wheel system, which is composed of in-wheel permanent magnet synchronous motor(I-PMSM) and tire, is more convenient to estimate the slip ratio because the rotary speed of the rotor can be accurately measured. However, the ring speed of the tire ring doesn’t equal to the rotor speed considering the tire deformation. For this reason, a deformable tire and a detailed I-PMSM are modeled by using Matlab/Simulink. Moreover, the tire/road contact interface(a slippery road) is accurately described by the non-linear relaxation length-based model and the Magic Formula pragmatic model. Based on the relatively accurate model, the error of slip ratio estimated by the rotor rotary speed is analyzed in both time and frequency domains when a quarter car is started by the I-PMSM with a definite target torque input curve. In addition, the natural frequencies(NFs) of the driving wheel system with variable parameters are illustrated to present the relationship between the slip ratio estimation error and the NF. According to this relationship, a low-pass filter, whose cut-off frequency corresponds to the NF, is proposed to eliminate the error in the estimated slip ratio. The analysis, concerning the effect of the driving wheel parameters and road conditions on slip ratio estimation, shows that the peak estimation error can be reduced up to 75% when the LPF is adopted. The robustness and effectiveness of the LPF are therefore validated. This paper builds up the deformable tire model and the detailed I-PMSM models, and analyzes the effect of the driving wheel parameters and road conditions on slip ratio estimation.
文摘The Udwadia-Kalaba formulation is proposed to model the dynamics of the rolling wheel. A unified approach that addresses both the slip and the stiction in the contact section is considered. Purely rolling constraints are associated with stiction and are suitably lifted as slip occurs. An extended formulation for the Uwadia-Kalaba equations of motion is introduced for that matter. It resorts to the weighted minimum norm and the weighted semi-least-squares solutions of the constraints equations. This not only allows a bias on constraints, by an appropriate description of weight functions based on friction, it also leads to a smooth activation or deactivation of selected constraints without rewriting the equations of motion or upsetting their numerical integration.
文摘A dynamic space coupling model is developed for simulating the vibrations of wheel/rail systems as well as the torsion and bending vibrations of wheelsets. It is found that the slip stick vibrations of wheelsets are mainly caused and controlled by the crossing excitation or self excitation of the vertical vibrations of the whole system and by the bending vibrations and torsion vibrations of the wheelsets. It is found for the first time that the slip stick vibrations may occur in more than one forms, and one or another of the three kinds of vibrations is excited more strongly. Four typical kinds of slip stick vibrations are enumerated and described. The field investigation on rail corrugations shows that the four kinds of slip stick vibrations are most likely to exist and related with different corrugated features.
基金Supported by Key Research and Development Program of Jiangsu Province of China(Grant No.BE2021006-2)University Synergy Innovation Program of Anhui Province of China(Grant No.GXXT-2020-076)Innovation Project of New Energy Vehicle and Intelligent Connected Vehicle of Anhui Province of China,and Foundation of State Key Laboratory of Automotive Simulation and Control of China(Grant No.20201107).
文摘Due to quick response and large quantity of electric motor torque,the traction wheels of battery electric vehicle are easy to slip during the initial phase of starting.In this paper,a sliding mode control approach of acceleration slip regulation is designed to prevent the slip of the traction wheels.The wheel slip ratio is used as the state variable for the formulation of system dynamics model.The fuzzy algorithm is utilized to adjust the switch function of sliding mode controller.After stability and robustness analysis,the sliding mode control law is transferred into C code and downloaded into vehicle control unit,which is validated under wet and dry road conditions.The experimental results with a small overshoot and a quick response during starting indicate that the sliding mode controller has good control efect on the slip ratio regulation.This article proposes an acceleration slip regulation method that improves the safety during acceleration for battery electric vehicle.
文摘Three major methods currently in the use of determining vehicle speed based on wheel speeds, the minimum wheel speed, minimum wheel speed corrected by slope method and the Kalman filter method, are analyzed, with merits and defects of each approach stated. Through simulations, the Kalman filter method based on minimum wheel speed shows improved accuracy, in addition to better adaptivity to vehicle reference speed. It also can be used to acceleration ship regulation (ASR) in part-time four-wheel drive vehicles.
基金supported by the Natural Science Foundation of Jiangsu Province(No. BK20151472)the Research Project of Key Laboratory of Advanced Manufacture Technology for Automobile Parts(Chongqing University of Technology) , Ministry of Education (No. 2015KLMT04)
文摘With the worsening of energy crisis and environmental pollution,electric vehicles with four in?wheel motors have been paid more and more attention. The main research subject is how to reasonably distribute the driving torque of each wheel. Considering the longitudinal motion,lateral motion,yaw movement and rotation of the four wheels,the tire model and the seven DOF dynamic model of the vehicle are established in this paper. Then,the torque distribution method is proposed based on road adhesion margin,which can be divided into anti ? slip control layer and torque distribution layer. The anti?slip control layer is built based on sliding mode variable structure control,whose main function is to avoid the excessive slip of wheels caused by road conditions. The torque distribution layer is responsible for selecting the torque distribution method based on road adhesion margin. The simulation results show that the proposed torque distribution method can ensure the vehicle quickly adapt to current road adhesion conditions,and improve the handling stability and dynamic performance of the vehicle in the driving process.