In response to the weaknesses of traditional agricultural equipment chassis with poor environmental adaptability and inferior mobility, a novel unmanned agricultural machinery chassis has been developed that can opera...In response to the weaknesses of traditional agricultural equipment chassis with poor environmental adaptability and inferior mobility, a novel unmanned agricultural machinery chassis has been developed that can operate stably and efficiently under various complex terrain conditions. Initially, a new wheel-legged structure was designed by drawing inspiration from the motion principles of grasshopper hind legs and combining them with pneumatic-hydraulic linkage mechanisms. Kinematic analysis was conducted on this wheel-legged configuration by utilizing the D-H parameter method, which revealed that its end effector has a travel range of 0-450 mm in the X-direction, 0-840 mm in the Y-direction, and 0-770 mm in the Z-direction, thereby providing the structural foundation for features such as independent four-wheel steering, adjustable wheel track, automatic vehicle body elevation adjustment, and maintaining a level body posture on different slopes. Subsequently, theoretical analysis and structural parameter calculations were completed to design each subsystem of the unmanned chassis. Further, kinematic analysis of the wheel-legged unmanned chassis was carried out using RecurDyn, which substantiated the feasibility of achieving functions like slope leveling and autonomous obstacle negotiation. An omnidirectional leveling control system was also established, taking into account factors such as pitch angle, roll angle, virtual leg deployment, and center of gravity height. Joint simulations using Adams and Matlab were performed on the wheel-legged unmanned chassis, comparing its leveling performance with that of a PID control system. The results indicated that the maximum absolute value of leveling error was 1.08° for the pitch angle and 1.19° for the roll angle, while the standard deviations were 0.216 47° for the pitch angle and 0.176 22° for the roll angle, demonstrating that the wheel-legged unmanned chassis surpassed the PID control system in leveling performance, thus validating the correctness and feasibility of its full-directional body posture leveling control in complex environments. Finally, the wheel-legged unmanned chassis was fabricated, assembled, and subjected to in-place leveling and ground clearance adjustment tests. The experimental outcomes showed that the vehicle was capable of achieving in-place leveling with response speed and leveling accuracy meeting practical operational requirements under the action of the posture control system. Moreover, the adjustable ground clearance proved sufficient to meet the demands of actual obstacle crossing scenarios.展开更多
The wheel-legged hybrid structure has been utilized by ground mobile platforms in recent years to achieve good mobility on both flat surfaces and rough terrain.However,most of the wheel-legged robots only have one-dir...The wheel-legged hybrid structure has been utilized by ground mobile platforms in recent years to achieve good mobility on both flat surfaces and rough terrain.However,most of the wheel-legged robots only have one-directional obstacle-crossing ability.During the motion,most of the wheel-legged robots’centroid fluctuates violently,which damages the stability of the load.What’s more,many designs of the obstacle-crossing part and transformation-driving part of this structure are highly coupled,which limits its optimal performance in both aspects.This paper presents a novel wheel-legged robot with a rim-shaped changeable wheel,which has a bi-directional and smooth obstacle-crossing ability.Based on the kinematic model,the geometric parameters of the wheel structure and the design variables of the driving four-bar mechanism are optimized separately.The kinetostatics model of the mobile platform when climbing stairs is established to determine the body length and angular velocity of the driving wheels.A pro-totype is made according to the optimal parameters.Experiments show that the prototype installed with the novel transformable wheels can overcome steps with a height of 1.52 times of its wheel radius with less fluctuation of its centroid and performs good locomotion capabilities in different environments.展开更多
Serving the Stewart mechanism as a wheel-legged structure,the most outstanding superiority of the proposed wheel-legged hybrid robot(WLHR)is the active vibration isolation function during rolling on rugged terrain.How...Serving the Stewart mechanism as a wheel-legged structure,the most outstanding superiority of the proposed wheel-legged hybrid robot(WLHR)is the active vibration isolation function during rolling on rugged terrain.However,it is difficult to obtain its precise dynamic model,because of the nonlinearity and uncertainty of the heavy robot.This paper presents a dynamic control framework with a decentralized structure for single wheel-leg,position tracking based on model predictive control(MPC)and adaptive impedance module from inside to outside.Through the Newton-Euler dynamic model of the Stewart mechanism,the controller first creates a predictive model by combining Newton-Raphson iteration of forward kinematic and inverse kinematic calculation of Stewart.The actuating force naturally enables each strut to stretch and retract,thereby realizing six degrees-of-freedom(6-DOFs)position-tracking for Stewart wheel-leg.The adaptive impedance control in the outermost loop adjusts environmental impedance parameters by current position and force feedback of wheel-leg along Z-axis.This adjustment allows the robot to adequately control the desired support force tracking,isolating the robot body from vibration that is generated from unknown terrain.The availability of the proposed control methodology on a physical prototype is demonstrated by tracking a Bezier curve and active vibration isolation while the robot is rolling on decelerate strips.By comparing the proportional and integral(PI)and constant impedance controllers,better performance of the proposed algorithm was operated and evaluated through displacement and force sensors internally-installed in each cylinder,as well as an inertial measurement unit(IMU)mounted on the robot body.The proposed algorithm structure significantly enhances the control accuracy and vibration isolation capacity of parallel wheel-legged robot.展开更多
The Altomani&Sons Collection owns a remarkable newly discovered portrait of Guidobaldo II della Rovere,Duke of Urbino(1514-1574),a historical military figure who was a condottiere,ruler of Urbino,Commander-in-chie...The Altomani&Sons Collection owns a remarkable newly discovered portrait of Guidobaldo II della Rovere,Duke of Urbino(1514-1574),a historical military figure who was a condottiere,ruler of Urbino,Commander-in-chief of the Papal Estate,and Perfect of Rome,as well as a collector and patron of the Fine Arts.Camilla Guerrieri Nati(1628-1694),a seventeenth-century Italian painter from Fossombrone(in the province of Pesaro and Urbino),portrayed this heroic personage surrounded by emblems associated with his military courage and leadership,including his plumed burgonet helmet,metal gilded armor,a necklace with the golden fleece,and batons of secular and religious dominions.This oil painting on copper-considered a precious metal at the time-emphasizes the importance of the commission.The material and technique also reveals a unique artistic achievement in that it provides the painting with a smooth,reflective surface and vibrant coloration,symbolizing precious imagery.展开更多
Though the studies of wheel-legged robots have achieved great success, the existing ones still have defects in load distribution, structure stability and carrying capacity. For overcoming these shortcomings, a new kin...Though the studies of wheel-legged robots have achieved great success, the existing ones still have defects in load distribution, structure stability and carrying capacity. For overcoming these shortcomings, a new kind of wheel-legged robot(Rolling-Wolf) is designed. It is actuated by means of ball screws and sliders, and each leg forms two stable triangle structures at any moment, which is simple but has high structure stability. The positional posture model and statics model are built and used to analyze the kinematic and mechanical properties of Rolling-Wolf. Based on these two models, important indexes for evaluating its motion performance are analyzed. According to the models and indexes, all of the structure parameters which influence the motion performance of Rolling-Wolf are optimized by the method of Archive-based Micro Genetic Algorithm(AMGA) by using Isight and Matlab software. Compared to the initial values, the maximum rotation angle of the thigh is improved by 4.17%, the maximum lifting height of the wheel is improved by 65.53%, and the maximum driving forces of the thigh and calf are decreased by 25.5% and 12.58%, respectively. The conspicuous optimization results indicate that Rolling-Wolf is much more excellent. The novel wheel-leg structure of Rolling-Wolf is efficient in promoting the load distribution, structure stability and carrying capacity of wheel-legged robot and the proposed optimization method provides a new approach for structure optimization.展开更多
The existing research on dynamics and slip ratio of wheeled mobile robot (WMR) are derived without considering the effect of height, and the existing models can not be used to analyze the dynamics performance of the...The existing research on dynamics and slip ratio of wheeled mobile robot (WMR) are derived without considering the effect of height, and the existing models can not be used to analyze the dynamics performance of the robot with variable height while moving such as NOROS- Ⅱ. The existing method of dynamics modeling is improved by adding the constraint equation between perpendicular displacement of body and horizontal displacement of wheel into the constraint conditions. The dynamic model of NOROS- Ⅱ in wheel motion is built by the Lagrange method under nonholonomic constraints. The inverse dynamics is calculated in three different paths based on this model, and the results demonstrate that torques of hip pitching joints are inversely proportional to the height of robot. The relative error of calculated torques is less than 2% compared with that of ADAMS simulation, by which the validity of dynamic model is verified, Moreover, the relative horizontal motion between fore/hind wheels and body is produced when the height is changed, and thus the accurate slip ratio can not be obtained by the traditional equation. The improved slip ratio equations with the parameter of the vertical velocity of body are introduced for fore wheels and hind wheels respectively. Numerical simulations of slip ratios are conducted to reveal the effect of varied height on slip ratios of different wheels. The result shows that the slip ratios of fore/hind wheels become larger/smaller respectively as the height increases, and as the height is reduced, the reverse applies. The proposed research of dynamic model and slip ratio based on the robot height provides the effective method to analyze the dynamics of WMRs with varying height.展开更多
Robots are widely used to replace people in some burdensome or hamaful areas. Not only the moving ability but also the manipulating ability is needed in the missions of complex multitasking requirements. In the last d...Robots are widely used to replace people in some burdensome or hamaful areas. Not only the moving ability but also the manipulating ability is needed in the missions of complex multitasking requirements. In the last decades, wheel-legged hexapod robots are extensively studied to ineet this condition.展开更多
基金supported by the Key Laboratory of Modern Agricultural Intelligent Equipment in South China,Ministry of Agriculture and Rural Affairs,China.
文摘In response to the weaknesses of traditional agricultural equipment chassis with poor environmental adaptability and inferior mobility, a novel unmanned agricultural machinery chassis has been developed that can operate stably and efficiently under various complex terrain conditions. Initially, a new wheel-legged structure was designed by drawing inspiration from the motion principles of grasshopper hind legs and combining them with pneumatic-hydraulic linkage mechanisms. Kinematic analysis was conducted on this wheel-legged configuration by utilizing the D-H parameter method, which revealed that its end effector has a travel range of 0-450 mm in the X-direction, 0-840 mm in the Y-direction, and 0-770 mm in the Z-direction, thereby providing the structural foundation for features such as independent four-wheel steering, adjustable wheel track, automatic vehicle body elevation adjustment, and maintaining a level body posture on different slopes. Subsequently, theoretical analysis and structural parameter calculations were completed to design each subsystem of the unmanned chassis. Further, kinematic analysis of the wheel-legged unmanned chassis was carried out using RecurDyn, which substantiated the feasibility of achieving functions like slope leveling and autonomous obstacle negotiation. An omnidirectional leveling control system was also established, taking into account factors such as pitch angle, roll angle, virtual leg deployment, and center of gravity height. Joint simulations using Adams and Matlab were performed on the wheel-legged unmanned chassis, comparing its leveling performance with that of a PID control system. The results indicated that the maximum absolute value of leveling error was 1.08° for the pitch angle and 1.19° for the roll angle, while the standard deviations were 0.216 47° for the pitch angle and 0.176 22° for the roll angle, demonstrating that the wheel-legged unmanned chassis surpassed the PID control system in leveling performance, thus validating the correctness and feasibility of its full-directional body posture leveling control in complex environments. Finally, the wheel-legged unmanned chassis was fabricated, assembled, and subjected to in-place leveling and ground clearance adjustment tests. The experimental outcomes showed that the vehicle was capable of achieving in-place leveling with response speed and leveling accuracy meeting practical operational requirements under the action of the posture control system. Moreover, the adjustable ground clearance proved sufficient to meet the demands of actual obstacle crossing scenarios.
基金Supported by State Key Lab of Mechanical System and Vibration Project of China(Grant No.MSVZD202008).
文摘The wheel-legged hybrid structure has been utilized by ground mobile platforms in recent years to achieve good mobility on both flat surfaces and rough terrain.However,most of the wheel-legged robots only have one-directional obstacle-crossing ability.During the motion,most of the wheel-legged robots’centroid fluctuates violently,which damages the stability of the load.What’s more,many designs of the obstacle-crossing part and transformation-driving part of this structure are highly coupled,which limits its optimal performance in both aspects.This paper presents a novel wheel-legged robot with a rim-shaped changeable wheel,which has a bi-directional and smooth obstacle-crossing ability.Based on the kinematic model,the geometric parameters of the wheel structure and the design variables of the driving four-bar mechanism are optimized separately.The kinetostatics model of the mobile platform when climbing stairs is established to determine the body length and angular velocity of the driving wheels.A pro-totype is made according to the optimal parameters.Experiments show that the prototype installed with the novel transformable wheels can overcome steps with a height of 1.52 times of its wheel radius with less fluctuation of its centroid and performs good locomotion capabilities in different environments.
基金Supported by National Natural Science Foundation of China(Grant No.61773060).
文摘Serving the Stewart mechanism as a wheel-legged structure,the most outstanding superiority of the proposed wheel-legged hybrid robot(WLHR)is the active vibration isolation function during rolling on rugged terrain.However,it is difficult to obtain its precise dynamic model,because of the nonlinearity and uncertainty of the heavy robot.This paper presents a dynamic control framework with a decentralized structure for single wheel-leg,position tracking based on model predictive control(MPC)and adaptive impedance module from inside to outside.Through the Newton-Euler dynamic model of the Stewart mechanism,the controller first creates a predictive model by combining Newton-Raphson iteration of forward kinematic and inverse kinematic calculation of Stewart.The actuating force naturally enables each strut to stretch and retract,thereby realizing six degrees-of-freedom(6-DOFs)position-tracking for Stewart wheel-leg.The adaptive impedance control in the outermost loop adjusts environmental impedance parameters by current position and force feedback of wheel-leg along Z-axis.This adjustment allows the robot to adequately control the desired support force tracking,isolating the robot body from vibration that is generated from unknown terrain.The availability of the proposed control methodology on a physical prototype is demonstrated by tracking a Bezier curve and active vibration isolation while the robot is rolling on decelerate strips.By comparing the proportional and integral(PI)and constant impedance controllers,better performance of the proposed algorithm was operated and evaluated through displacement and force sensors internally-installed in each cylinder,as well as an inertial measurement unit(IMU)mounted on the robot body.The proposed algorithm structure significantly enhances the control accuracy and vibration isolation capacity of parallel wheel-legged robot.
文摘The Altomani&Sons Collection owns a remarkable newly discovered portrait of Guidobaldo II della Rovere,Duke of Urbino(1514-1574),a historical military figure who was a condottiere,ruler of Urbino,Commander-in-chief of the Papal Estate,and Perfect of Rome,as well as a collector and patron of the Fine Arts.Camilla Guerrieri Nati(1628-1694),a seventeenth-century Italian painter from Fossombrone(in the province of Pesaro and Urbino),portrayed this heroic personage surrounded by emblems associated with his military courage and leadership,including his plumed burgonet helmet,metal gilded armor,a necklace with the golden fleece,and batons of secular and religious dominions.This oil painting on copper-considered a precious metal at the time-emphasizes the importance of the commission.The material and technique also reveals a unique artistic achievement in that it provides the painting with a smooth,reflective surface and vibrant coloration,symbolizing precious imagery.
基金Supported by National Hi-tech Research and Development Program of China (863 Program,Grant No.CDJZR13110073)
文摘Though the studies of wheel-legged robots have achieved great success, the existing ones still have defects in load distribution, structure stability and carrying capacity. For overcoming these shortcomings, a new kind of wheel-legged robot(Rolling-Wolf) is designed. It is actuated by means of ball screws and sliders, and each leg forms two stable triangle structures at any moment, which is simple but has high structure stability. The positional posture model and statics model are built and used to analyze the kinematic and mechanical properties of Rolling-Wolf. Based on these two models, important indexes for evaluating its motion performance are analyzed. According to the models and indexes, all of the structure parameters which influence the motion performance of Rolling-Wolf are optimized by the method of Archive-based Micro Genetic Algorithm(AMGA) by using Isight and Matlab software. Compared to the initial values, the maximum rotation angle of the thigh is improved by 4.17%, the maximum lifting height of the wheel is improved by 65.53%, and the maximum driving forces of the thigh and calf are decreased by 25.5% and 12.58%, respectively. The conspicuous optimization results indicate that Rolling-Wolf is much more excellent. The novel wheel-leg structure of Rolling-Wolf is efficient in promoting the load distribution, structure stability and carrying capacity of wheel-legged robot and the proposed optimization method provides a new approach for structure optimization.
基金supported by National Outstanding Youth Science Foundation of China (Grant No. 51125020)National Hi-tech Research and Development Program of China (863 Program, Grant No. 2006AA04Z207)Program for New Century Excellent Talents in University, China
文摘The existing research on dynamics and slip ratio of wheeled mobile robot (WMR) are derived without considering the effect of height, and the existing models can not be used to analyze the dynamics performance of the robot with variable height while moving such as NOROS- Ⅱ. The existing method of dynamics modeling is improved by adding the constraint equation between perpendicular displacement of body and horizontal displacement of wheel into the constraint conditions. The dynamic model of NOROS- Ⅱ in wheel motion is built by the Lagrange method under nonholonomic constraints. The inverse dynamics is calculated in three different paths based on this model, and the results demonstrate that torques of hip pitching joints are inversely proportional to the height of robot. The relative error of calculated torques is less than 2% compared with that of ADAMS simulation, by which the validity of dynamic model is verified, Moreover, the relative horizontal motion between fore/hind wheels and body is produced when the height is changed, and thus the accurate slip ratio can not be obtained by the traditional equation. The improved slip ratio equations with the parameter of the vertical velocity of body are introduced for fore wheels and hind wheels respectively. Numerical simulations of slip ratios are conducted to reveal the effect of varied height on slip ratios of different wheels. The result shows that the slip ratios of fore/hind wheels become larger/smaller respectively as the height increases, and as the height is reduced, the reverse applies. The proposed research of dynamic model and slip ratio based on the robot height provides the effective method to analyze the dynamics of WMRs with varying height.
文摘Robots are widely used to replace people in some burdensome or hamaful areas. Not only the moving ability but also the manipulating ability is needed in the missions of complex multitasking requirements. In the last decades, wheel-legged hexapod robots are extensively studied to ineet this condition.