Objective This study aimed to compare the performance of standard-definition white-light endoscopy(SD-WL),high-definition white-light endoscopy(HD-WL),and high-definition narrow-band imaging(HD-NBI)in detecting colore...Objective This study aimed to compare the performance of standard-definition white-light endoscopy(SD-WL),high-definition white-light endoscopy(HD-WL),and high-definition narrow-band imaging(HD-NBI)in detecting colorectal lesions in the Chinese population.Methods This was a multicenter,single-blind,randomized,controlled trial with a non-inferiority design.Patients undergoing endoscopy for physical examination,screening,and surveillance were enrolled from July 2017 to December 2020.The primary outcome measure was the adenoma detection rate(ADR),defined as the proportion of patients with at least one adenoma detected.The associated factors for detecting adenomas were assessed using univariate and multivariate logistic regression.Results Out of 653 eligible patients enrolled,data from 596 patients were analyzed.The ADRs were 34.5%in the SD-WL group,33.5%in the HD-WL group,and 37.5%in the HD-NBI group(P=0.72).The advanced neoplasm detection rates(ANDRs)in the three arms were 17.1%,15.5%,and 10.4%(P=0.17).No significant differences were found between the SD group and HD group regarding ADR or ANDR(ADR:34.5%vs.35.6%,P=0.79;ANDR:17.1%vs.13.0%,P=0.16,respectively).Similar results were observed between the HD-WL group and HD-NBI group(ADR:33.5%vs.37.7%,P=0.45;ANDR:15.5%vs.10.4%,P=0.18,respectively).In the univariate and multivariate logistic regression analyses,neither HD-WL nor HD-NBI led to a significant difference in overall adenoma detection compared to SD-WL(HD-WL:OR 0.91,P=0.69;HD-NBI:OR 1.15,P=0.80).Conclusion HD-NBI and HD-WL are comparable to SD-WL for overall adenoma detection among Chinese outpatients.It can be concluded that HD-NBI or HD-WL is not superior to SD-WL,but more effective instruction may be needed to guide the selection of different endoscopic methods in the future.Our study’s conclusions may aid in the efficient allocation and utilization of limited colonoscopy resources,especially advanced imaging technologies.展开更多
针对强日光环境下OCC(Optical Camera Communication)系统接收端解码困难的问题,提出了基于分段式线性灰度变换的Gradient-Harris解码算法。首先搭建一套OCC实验系统,接收端相机采集原始图像,利用标准相关系数匹配方法提取目标LED阵列...针对强日光环境下OCC(Optical Camera Communication)系统接收端解码困难的问题,提出了基于分段式线性灰度变换的Gradient-Harris解码算法。首先搭建一套OCC实验系统,接收端相机采集原始图像,利用标准相关系数匹配方法提取目标LED阵列区域。其次通过分段式线性灰度变换对目标LED阵列区域进行图像增强,利用Gradient-Harris解码算法进行目标LED阵列的形状提取和状态识别。实验结果表明,应用基于分段式线性灰度变换的Gradient-Harris解码算法,强日光环境下OCC实验系统的平均解码速率为128.08 bit/s,平均误码率为4.38×10^(-4),最大通信距离为55 m。展开更多
基金supported by the Beijing Municipal Science and Technology Commission(BMSTC,No.D171100002617001).
文摘Objective This study aimed to compare the performance of standard-definition white-light endoscopy(SD-WL),high-definition white-light endoscopy(HD-WL),and high-definition narrow-band imaging(HD-NBI)in detecting colorectal lesions in the Chinese population.Methods This was a multicenter,single-blind,randomized,controlled trial with a non-inferiority design.Patients undergoing endoscopy for physical examination,screening,and surveillance were enrolled from July 2017 to December 2020.The primary outcome measure was the adenoma detection rate(ADR),defined as the proportion of patients with at least one adenoma detected.The associated factors for detecting adenomas were assessed using univariate and multivariate logistic regression.Results Out of 653 eligible patients enrolled,data from 596 patients were analyzed.The ADRs were 34.5%in the SD-WL group,33.5%in the HD-WL group,and 37.5%in the HD-NBI group(P=0.72).The advanced neoplasm detection rates(ANDRs)in the three arms were 17.1%,15.5%,and 10.4%(P=0.17).No significant differences were found between the SD group and HD group regarding ADR or ANDR(ADR:34.5%vs.35.6%,P=0.79;ANDR:17.1%vs.13.0%,P=0.16,respectively).Similar results were observed between the HD-WL group and HD-NBI group(ADR:33.5%vs.37.7%,P=0.45;ANDR:15.5%vs.10.4%,P=0.18,respectively).In the univariate and multivariate logistic regression analyses,neither HD-WL nor HD-NBI led to a significant difference in overall adenoma detection compared to SD-WL(HD-WL:OR 0.91,P=0.69;HD-NBI:OR 1.15,P=0.80).Conclusion HD-NBI and HD-WL are comparable to SD-WL for overall adenoma detection among Chinese outpatients.It can be concluded that HD-NBI or HD-WL is not superior to SD-WL,but more effective instruction may be needed to guide the selection of different endoscopic methods in the future.Our study’s conclusions may aid in the efficient allocation and utilization of limited colonoscopy resources,especially advanced imaging technologies.
文摘针对强日光环境下OCC(Optical Camera Communication)系统接收端解码困难的问题,提出了基于分段式线性灰度变换的Gradient-Harris解码算法。首先搭建一套OCC实验系统,接收端相机采集原始图像,利用标准相关系数匹配方法提取目标LED阵列区域。其次通过分段式线性灰度变换对目标LED阵列区域进行图像增强,利用Gradient-Harris解码算法进行目标LED阵列的形状提取和状态识别。实验结果表明,应用基于分段式线性灰度变换的Gradient-Harris解码算法,强日光环境下OCC实验系统的平均解码速率为128.08 bit/s,平均误码率为4.38×10^(-4),最大通信距离为55 m。