期刊文献+
共找到3,364篇文章
< 1 2 169 >
每页显示 20 50 100
Inferring Mycobacterium Tuberculosis Drug Resistance and Transmission using Whole-genome Sequencing in a High TB-burden Setting in China
1
作者 FAN Yu Feng LIU Dong Xin +11 位作者 CHEN Yi Wang OU Xi Chao MAO Qi Zhi YANG Ting Ting WANG Xi Jiang HE Wen Cong ZHAO Bing LIU Zhen Jiang ABULIMITI Maiweilanjiang AIHEMUTI Maimaitiaili GAO Qian ZHAO Yan Lin 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2024年第2期157-169,共13页
Objective China is among the 30 countries with a high burden of tuberculosis(TB)worldwide,and TB remains a public health concern.Kashgar Prefecture in the southern Xinjiang Autonomous Region is considered as one of th... Objective China is among the 30 countries with a high burden of tuberculosis(TB)worldwide,and TB remains a public health concern.Kashgar Prefecture in the southern Xinjiang Autonomous Region is considered as one of the highest TB burden regions in China.However,molecular epidemiological studies of Kashgar are lacking.Methods A population-based retrospective study was conducted using whole-genome sequencing(WGS)to determine the characteristics of drug resistance and the transmission patterns.Results A total of 1,668 isolates collected in 2020 were classified into lineages 2(46.0%),3(27.5%),and 4(26.5%).The drug resistance rates revealed by WGS showed that the top three drugs in terms of the resistance rate were isoniazid(7.4%,124/1,668),streptomycin(6.0%,100/1,668),and rifampicin(3.3%,55/1,668).The rate of rifampicin resistance was 1.8%(23/1,290)in the new cases and 9.4%(32/340)in the previously treated cases.Known resistance mutations were detected more frequently in lineage 2 strains than in lineage 3 or 4 strains,respectively:18.6%vs.8.7 or 9%,P<0.001.The estimated proportion of recent transmissions was 25.9%(432/1,668).Multivariate logistic analyses indicated that sex,age,occupation,lineage,and drug resistance were the risk factors for recent transmission.Despite the low rate of drug resistance,drug-resistant strains had a higher risk of recent transmission than the susceptible strains(adjusted odds ratio,1.414;95%CI,1.023–1.954;P=0.036).Among all patients with drug-resistant tuberculosis(DR-TB),78.4%(171/218)were attributed to the transmission of DR-TB strains.Conclusion Our results suggest that drug-resistant strains are more transmissible than susceptible strains and that transmission is the major driving force of the current DR-TB epidemic in Kashgar. 展开更多
关键词 Mycobacterium tuberculosis whole-genome sequencing(wgs) Transmission Drug resistance XINJIANG
下载PDF
To Analyze the Sensitivity of RT-PCR Assays Employing S Gene Target Failure with Whole Genome Sequencing Data during Third Wave by SARS-CoV-2 Omicron Variant
2
作者 Pooja Patel Yogita Mistry +1 位作者 Monika Patel Summaiya Mullan 《Advances in Microbiology》 CAS 2024年第5期247-255,共9页
Introduction: Omicron is a highly divergent variant of concern (VOCs) of a severe acute respiratory syndrome SARS-CoV-2. It carries a high number of mutations in its spike protein hence;it is more transmissible in the... Introduction: Omicron is a highly divergent variant of concern (VOCs) of a severe acute respiratory syndrome SARS-CoV-2. It carries a high number of mutations in its spike protein hence;it is more transmissible in the community by immune evasion mechanisms. Due to mutation within S gene, most Omicron variants have reported S gene target failure (SGTF) with some commercially available PCR kits. Such diagnostic features can be used as markers to screen Omicron. However, Whole Genome Sequencing (WGS) is the only gold standard approach to confirm novel microorganisms at genetically level as similar mutations can also be found in other variants that are circulating at low frequencies worldwide. This Retrospective study is aimed to assess RT-PCR sensitivity in the detection of S gene target failure in comparison with whole genome sequencing to detect variants of Omicron. Methods: We have analysed retrospective data of SARS-CoV-2 positive RT-PCR samples for S gene target failure (SGTF) with TaqPath COVID-19 RT-PCR Combo Kit (ThermoFisher) and combined with sequencing technologies to study the emerged pattern of SARS-CoV-2 variants during third wave at the tertiary care centre, Surat. Results: From the first day of December 2021 till the end of February 2022, a total of 321,803 diagnostic RT-PCR tests for SARS-CoV-2 were performed, of which 20,566 positive cases were reported at our tertiary care centre with an average cumulative positivity of 6.39% over a period of three months. In the month of December 21 samples characterized by the SGTF (70/129) were suggestive of being infected by the Omicron variant and identified as Omicron (B.1.1.529 lineage) when sequence. In the month of January, we analysed a subset of samples (n = 618) with SGTF (24%) and without SGTF (76%) with Ct values Conclusions: During the COVID-19 pandemic, it took almost more than 15 days to diagnose infection and identify pathogen by sequencing technology. In contrast to that molecular assay provided quick identification with the help of SGTF phenomenon within 5 hours of duration. This strategy helps scientists and health policymakers for the quick isolation and identification of clusters. That ultimately results in a decreased transmission of pathogen among the community. 展开更多
关键词 SARS-CoV-2 S Gene Target Failure whole genome sequencing Omicron
下载PDF
Safety evaluation and whole genome sequencing for revealing the ability of Penicillium oxalicum WX-209 to safely and effectively degrade citrus segments
3
作者 Xiao Hu Yujiao Qian +4 位作者 Zhipeng Gao Gaoyang Li Fuhua Fu Jiajing Guo Yang Shan 《Food Science and Human Wellness》 SCIE CSCD 2023年第6期2369-2380,共12页
The microbial potential of Penicillium has received critical attention.The present research aimed to elucidate the efficacy of crude enzyme secreted from Penicillium oxalicum WX-209 in degrading citrus segments and ev... The microbial potential of Penicillium has received critical attention.The present research aimed to elucidate the efficacy of crude enzyme secreted from Penicillium oxalicum WX-209 in degrading citrus segments and evaluate the safety of the process.Results showed that citrus segment membranes gradually dissolved after treatment with the crude enzyme solution,indicating good degradation capability.No significant differences in body weight,food ingestion rate,hematology,blood biochemistry,and weight changes of different organs were found between the enzyme intake and control groups.Serial experiments showed that the crude enzyme had high biological safety.Moreover,the whole genome of P.oxalicum WX-209 was sequenced by PacBio and Illumina platforms.Twenty-five scaffolds were assembled to generate 36 Mbp size of genome sequence comprising 11369 predicted genes modeled with a GC content of 48.33%.A total of 592 genes were annotated to encode enzymes related to carbohydrates,and some degradation enzyme genes were identified in strain P.oxalicum WX-209. 展开更多
关键词 Penicillium oxalicum WX-209 Crude enzyme DEGRADATION Safety evaluation genome sequencing
下载PDF
Copy number variation sequencing for diagnosis of cytomegalovirus infection based low-depth whole-genome sequencing technology in fetus:Three cases and literature review
4
作者 CHAI Shi-wei CHEN Ze-jun +7 位作者 LIU Chun-tao CHEN Su HE Gui-lin CHEN Yue-fen WANG Rui-xia ZHU Xin LING Yi GU Shuo 《Journal of Hainan Medical University》 CAS 2023年第14期53-57,共5页
Objective:To summarize the application value of copy number variant sequencing(CNV-seq)in the detection of fetal chromosome and cytomegalovirus load.Methods:The study analyzed the clinical basic data,relevant laborato... Objective:To summarize the application value of copy number variant sequencing(CNV-seq)in the detection of fetal chromosome and cytomegalovirus load.Methods:The study analyzed the clinical basic data,relevant laboratory tests,treatment process,and outcomes of three patients with positive cytomegalovirus load detected by CNV-seq for fetal chromosomes and cytomegalovirus load,and literature review was done simutaneoubly.Results:In all three cases,the amniotic fluid cytomegalovirus load was less than 105 Copies/ml,and there were no significant neurological abnormalities observed during pregnancy or postpartum follow-up.There is no literature review on the application of CNV-seq technology in the detection of cytomegalovirus infection,only literature reports on genome analysis of CMV-DNA in confirmed patients were available.Conclusion:CNV-seq can be used to detect cytomegalovirus load,which may have a certain degree of predictive value for fetal outcome.CNV-seq can simultaneously detect fetal chromosomes and pathogenic microorganisms,which is of great significance for the prevention and control of birth defects. 展开更多
关键词 genome copy number variation sequencing FETUS CMV load detection
下载PDF
Breed identification using breed‑informative SNPs and machine learning based on whole genome sequence data and SNP chip data 被引量:2
5
作者 Changheng Zhao Dan Wang +4 位作者 Jun Teng Cheng Yang Xinyi Zhang Xianming Wei Qin Zhang 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2023年第5期1941-1953,共13页
Background Breed identification is useful in a variety of biological contexts.Breed identification usually involves two stages,i.e.,detection of breed-informative SNPs and breed assignment.For both stages,there are se... Background Breed identification is useful in a variety of biological contexts.Breed identification usually involves two stages,i.e.,detection of breed-informative SNPs and breed assignment.For both stages,there are several methods proposed.However,what is the optimal combination of these methods remain unclear.In this study,using the whole genome sequence data available for 13 cattle breeds from Run 8 of the 1,000 Bull Genomes Project,we compared the combinations of three methods(Delta,FST,and In)for breed-informative SNP detection and five machine learning methods(KNN,SVM,RF,NB,and ANN)for breed assignment with respect to different reference population sizes and difference numbers of most breed-informative SNPs.In addition,we evaluated the accuracy of breed identification using SNP chip data of different densities.Results We found that all combinations performed quite well with identification accuracies over 95%in all scenarios.However,there was no combination which performed the best and robust across all scenarios.We proposed to inte-grate the three breed-informative detection methods,named DFI,and integrate the three machine learning methods,KNN,SVM,and RF,named KSR.We found that the combination of these two integrated methods outperformed the other combinations with accuracies over 99%in most cases and was very robust in all scenarios.The accuracies from using SNP chip data were only slightly lower than that from using sequence data in most cases.Conclusions The current study showed that the combination of DFI and KSR was the optimal strategy.Using sequence data resulted in higher accuracies than using chip data in most cases.However,the differences were gener-ally small.In view of the cost of genotyping,using chip data is also a good option for breed identification. 展开更多
关键词 Breed identification Breed-informative SNPs Genomic breed composition Machine learning whole genome sequence data
下载PDF
Improving the accuracy of genomic prediction for meat quality traits using whole genome sequence data in pigs 被引量:1
6
作者 Zhanwei Zhuang Jie Wu +14 位作者 Yibin Qiu Donglin Ruan Rongrong Ding Cineng Xu Shenping Zhou Yuling Zhang Yiyi Liu Fucai Ma Jifei Yang Ying Sun Enqin Zheng Ming Yang Gengyuan Cai Jie Yang Zhenfang Wu 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2023年第5期1880-1894,共15页
Background Pork quality can directly affect customer purchase tendency and meat quality traits have become valu-able in modern pork production.However,genetic improvement has been slow due to high phenotyping costs.In... Background Pork quality can directly affect customer purchase tendency and meat quality traits have become valu-able in modern pork production.However,genetic improvement has been slow due to high phenotyping costs.In this study,whole genome sequence(WGS)data was used to evaluate the prediction accuracy of genomic best linear unbiased prediction(GBLUP)for meat quality in large-scale crossbred commercial pigs.Results We produced WGS data(18,695,907 SNPs and 2,106,902 INDELs exceed quality control)from 1,469 sequenced Duroc×(Landrace×Yorkshire)pigs and developed a reference panel for meat quality including meat color score,marbling score,L*(lightness),a*(redness),and b*(yellowness)of genomic prediction.The prediction accuracy was defined as the Pearson correlation coefficient between adjusted phenotypes and genomic estimated breeding values in the validation population.Using different marker density panels derived from WGS data,accuracy differed substantially among meat quality traits,varied from 0.08 to 0.47.Results showed that MultiBLUP outperform GBLUP and yielded accuracy increases ranging from 17.39%to 75%.We optimized the marker density and found medium-and high-density marker panels are beneficial for the estimation of heritability for meat quality.Moreover,we conducted genotype imputation from 50K chip to WGS level in the same population and found average concord-ance rate to exceed 95%and r^(2)=0.81.Conclusions Overall,estimation of heritability for meat quality traits can benefit from the use of WGS data.This study showed the superiority of using WGS data to genetically improve pork quality in genomic prediction. 展开更多
关键词 Genomic prediction Meat quality PIGS whole genome sequence
下载PDF
Genome sequencing provides potential strategies for drug discovery and synthesis
7
作者 Chunsheng Zhao Ziwei Zhang +3 位作者 Linlin Sun Ronglu Bai Lizhi Wang Shilin Chen 《Acupuncture and Herbal Medicine》 2023年第4期244-255,共12页
Medicinal plants are renowned for their abundant production of secondary metabolites,which exhibit notable pharmacological activities and great potential for drug development.The biosynthesis of secondary metabolites ... Medicinal plants are renowned for their abundant production of secondary metabolites,which exhibit notable pharmacological activities and great potential for drug development.The biosynthesis of secondary metabolites is highly intricate and influenced by various intrinsic and extrinsic factors,resulting in substantial species diversity and content variation.Consequently,precise regulation of secondary metabolite synthesis is of utmost importance.In recent years,genome sequencing has emerged as a valuable tool for investigating the synthesis and regulation of secondary metabolites in medicinal plants,facilitated by the widespread use of high-throughput sequencing technologies.This review highlights the latest advancements in genome sequencing within this field and presents several strategies for studying secondary metabolites.Specifically,the article elucidates how genome sequencing can unravel the pathways for secondary metabolite synthesis in medicinal plants,offering insights into the functions and regulatory mechanisms of participating enzymes.Comparative analyses of plant genomes allow identification of shared pathways of metabolite synthesis among species,thereby providing novel avenues for obtaining cost-effective biosynthetic intermediates.By examining individual genomic variations,genes or gene clusters associated with the synthesis of specific compounds can be discovered,indicating potential targets and directions for drug development and the exploration of alternative compound sources.Moreover,the advent of gene-editing technology has enabled the precise modifications of medicinal plant genomes.Optimization of specific secondary metabolite synthesis pathways becomes thus feasible,enabling the precise editing of target genes to regulate secondary metabolite production within cells.These findings serve as valuable references and lessons for future drug development endeavors,conservation of rare resources,and the exploration of new resources. 展开更多
关键词 Biosynthetic pathways Gene editing genome sequencing Medicinal plants Secondary metabolites
下载PDF
Surveillance of emerging SARS-CoV-2 variants by nanopore technology-based genome sequencing
8
作者 J.I.Abeynayake G.P.Chathuranga +1 位作者 M.A.Y.Fernando M.K.Sahoo 《Asian Pacific Journal of Tropical Medicine》 SCIE CAS 2023年第7期313-320,共8页
Objective:To surveill emerging variants by nanopore technology-based genome sequencing in different COVID-19 waves in Sri Lanka and to examine the association with the sample characteristics,and vaccination status.Met... Objective:To surveill emerging variants by nanopore technology-based genome sequencing in different COVID-19 waves in Sri Lanka and to examine the association with the sample characteristics,and vaccination status.Methods:The study analyzed 207 RNA positive swab samples received to sequence laboratory during different waves.The N gene cut-off threshold of less than 30 was considered as the major inclusion criteria.Viral RNA was extracted,and elutes were subjected to nanopore sequencing.All the sequencing data were uploaded in the publicly accessible database,GISAID.Results:The Omicron,Delta and Alpha variants accounted for 58%,22%and 4%of the variants throughout the period.Less than 1%were Kappa variant and 16%of the study samples remained unassigned.Omicron variant was circulated among all age groups and in all the provinces.Ct value and variants assigned percentage was 100%in Ct values of 10-15 while only 45%assigned Ct value over 25.Conclusions:The present study examined the emergence,prevalence,and distribution of SARS-CoV-2 variants locally and has shown that nanopore technology-based genome sequencing enables whole genome sequencing in a low resource setting country. 展开更多
关键词 Emerging SARS-CoV-2 variants Laboratory surveillance Nanopore technology genome sequencing Bioinformatics analysis and phylogeny Sociodemographic and sample cutoff(Ct)threshold Global sharing of genomic data/GISAID
下载PDF
Evaluation of A Single-reaction Method for Whole Genome Sequencing of Influenza A Virus using Next Generation Sequencing
9
作者 Zou Xiao Hui Chen Wen Bing +4 位作者 Zhao Xiang Zhu Wen Fei Yang Lei Wang Da Yan Shu Yue Long 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2016年第1期41-46,共6页
Objective To evaluate a single-reaction genome amplification method, the multisegment reverse transcription-PCR (M-RTPCR), for its sensitivity to full genome sequencing of influenza A virus, and the ability to diffe... Objective To evaluate a single-reaction genome amplification method, the multisegment reverse transcription-PCR (M-RTPCR), for its sensitivity to full genome sequencing of influenza A virus, and the ability to differentiate mix-subtype virus, using the next generation sequencing (NGS) platform. Methods Virus genome copy was quantified and seria(iy diluted to different titers, followed by amplification with the M-RTPCR method and sequencing on the NGS platform. Furthermore, we manually mixed two subtype viruses to different titer rate and amplified the mixed virus with the M-RTPCR protocol, followed by whole genome sequencing on the NGS platform. We also used clinical samples to test the method performance. Results The M-RTPCR method obtained complete genome of testing virus at 125 copies/reaction and determined the virus subtype at titer of 25 copies/reaction. Moreover, the two subtypes in the mixed virus could be discriminated, even though these two virus copies differed by 200-fold using this amplification protocol. The sensitivity of this protocol we detected using virus RNA was also confirmed with clinical samples containing Iow-titer virus. Conclusion The M-RTPCR is a robust and sensitive amplification method for whole genome sequencing of influenza A virus using NGS platform. 展开更多
关键词 Influenza A virus whole genome sequencing NGS
下载PDF
Which Disease and Individual-Based Factors Predict Intentions to Undergo Whole Genome Sequencing?
10
作者 Felicity Kiln Alana Fisher Ilona Juraskova 《International Journal of Clinical Medicine》 2014年第20期1248-1260,共13页
Purpose: The past decade has seen rapid acceleration in the public’s access to Whole Genome Sequencing (WGS) technology, however, factors that may influence a person’s decision to undergo this complex health screeni... Purpose: The past decade has seen rapid acceleration in the public’s access to Whole Genome Sequencing (WGS) technology, however, factors that may influence a person’s decision to undergo this complex health screening have received little empirical attention. This is the first psychosocial study to investigate which disease and individual-based factors predict intention to undergo WGS. Methods: A total of 164 first-year university students responded to hypothetical disease scenarios (varied by disease penetrance and treatment availability) and completed self-report measures of individual factors. Results: Intention to undergo WGS was significantly higher in the presence of available treatment and high disease penetrance (p p p < 0.05). Conclusions: Treatability and disease penetrance appear to be two distinct motivations that can also interact to influence intention to pursue WGS. Task self-efficacy, positive outcome expectancies and uncertainty avoidance are likely to motivate intention to pursue WGS in young healthy adults. These findings will be useful in informing the optimal design of WGS psycho-educational resources and screening provider protocols. 展开更多
关键词 whole genome sequencing DISEASE PENETRANCE Treatment Availability PSYCHOLOGICAL FACTORS Theoretical Model
下载PDF
Molecular diagnosis of autosomal recessive cerebellar ataxia in the whole exome/genome sequencing era
11
作者 Christina Votsi Kyproula Christodoulou 《World Journal of Neurology》 2013年第4期115-128,共14页
Autosomal recessive cerebellar ataxias(ARCA) are a clinically and genetically heterogeneous group of rare neurodegenerative disorders characterized by autosomal recessive inheritance and an early age of onset. Progres... Autosomal recessive cerebellar ataxias(ARCA) are a clinically and genetically heterogeneous group of rare neurodegenerative disorders characterized by autosomal recessive inheritance and an early age of onset. Progressive ataxia is usually the prominent symptom and is often associated with other neurological or additional features. ARCA classification still remains controversial even though different approaches have been proposed over the years. Furthermore, ARCA molecular diagnosis has been a challenge due to phenotypic overlap and increased genetic heterogeneity observed within this group of disorders. Friedreich's ataxia and ataxia telangiectasia have been reported as the most frequent and well-studied forms of ARCA. Significant progress in understanding the genetic etiologies of the ARCA has been achieved during the last 15 years. The methodological revolution that has been observed in genetics over the last few years has contributed significantly to the molecular diagnosis of rare diseases including the ARCAs. Development of high throughput technologies has resulted in the identification of new ARCA genes and novel mutations in known ARCA genes. Therefore,an improvement in the molecular diagnosis of ARCA is expected. Moreover, based on the fact that many patients still remain undiagnosed, additional forms of ataxia are expected to be identified. We hereby review the current knowledge on the ARCAs, focused on the genetic findings of the most common forms that were molecularly characterized before the whole exome/genome era, as well as the most recently described forms that have been elucidated with the use of these novel technologies. The significant contribution of wholeexome sequencing or whole-genome sequencing in the molecular diagnosis of ARCAs is discussed. 展开更多
关键词 Autosomal RECESSIVE cerebellar ATAXIA whole-exome sequencing whole-genome sequencing HOMOZYGOSITY mapping Next generation sequencing
下载PDF
Complete Genome Sequencing and Genetic Variation Analysis of Two H9N2 Subtype Avian Influenza Virus Strains 被引量:2
12
作者 沈佳 章振华 +3 位作者 姜北宇 李林 景小冬 张建伟 《Agricultural Science & Technology》 CAS 2011年第2期291-294,共4页
[Objective] The study aimed to investigate the genetic variation characters of entire sequences between two H9N2 subtype avian influenza virus strains and other reference strains.[Method] The entire sequences of 8 gen... [Objective] The study aimed to investigate the genetic variation characters of entire sequences between two H9N2 subtype avian influenza virus strains and other reference strains.[Method] The entire sequences of 8 genes were obtained by using RT-PCR,and these sequences were analyzed with that of six H9N2 subtype avian influenza isolates in homology comparison and genetic evolution relation.[Result] The results showed that the nucleotide sequence of entire gene of the strain shared 91.1%-95.4% homology with other seven reference strains,and PG08 shared the highest homology 91.3% with C/BJ/1/94;ZD06 shared the highest homology 92.3% with D/HK/Y280/97.HA cleavage sites of two H9N2 subtype avian influenza virus isolated strains were PARSSR/GLF,typical of mildly pathogenic avian influenza virus.[Conclusion] Phylogenetic tree for entire gene of eight strains showed that the genetic relationship was the closest between ZD06 and C/Pak/2/99 strains,which belonged to the Eurasian lineage;PG08 shared the highest homology 91.3% with ZD06,it may be the product of gene rearrangements of other sub-lines. 展开更多
关键词 Avian influenza virus H9N2 subtype Complete genome Sequence analysis
下载PDF
Whole-genome sequencing in medicinal plants:current progress and prospect 被引量:1
13
作者 Yifei Pei Liang Leng +4 位作者 Wei Sun Baocai Liu Xue Feng Xiwen Li Shilin Chen 《Science China(Life Sciences)》 SCIE CAS CSCD 2024年第2期258-273,共16页
Advancements in genomics have dramatically accelerated the research on medicinal plants,and the development of herbgenomics has promoted the“Project of 1K Medicinal Plant Genome”to decipher their genetic code.Howeve... Advancements in genomics have dramatically accelerated the research on medicinal plants,and the development of herbgenomics has promoted the“Project of 1K Medicinal Plant Genome”to decipher their genetic code.However,it is difficult to obtain their high-quality whole genomes because of the prevalence of polyploidy and/or high genomic heterozygosity.Whole genomes of 123 medicinal plants were published until September 2022.These published genome sequences were investigated in this review,covering their classification,research teams,ploidy,medicinal functions,and sequencing strategies.More than 1,000 institutes or universities around the world and 50 countries are conducting research on medicinal plant genomes.Diploid species account for a majority of sequenced medicinal plants.The whole genomes of plants in the Poaceae family are the most studied.Almost 40%of the published papers studied species with tonifying,replenishing,and heat-cleaning medicinal effects.Medicinal plants are still in the process of domestication as compared with crops,thereby resulting in unclear genetic backgrounds and the lack of pure lines,thus making their genomes more difficult to complete.In addition,there is still no clear routine framework for a medicinal plant to obtain a high-quality whole genome.Herein,a clear and complete strategy has been originally proposed for creating a high-quality whole genome of medicinal plants.Moreover,whole genome-based biological studies of medicinal plants,including breeding and biosynthesis,were reviewed.We also advocate that a research platform of model medicinal plants should be established to promote the genomics research of medicinal plants. 展开更多
关键词 herbgenomics whole genome high throughput sequencing research strategy model species APPLICATION
原文传递
Chromosomal level assembly and population sequencing of the Chinese tree shrew genome 被引量:19
14
作者 Yu Fan Mao-Sen Ye +10 位作者 Jin-Yan Zhang Ling Xu Dan-Dan Yu Tian-Le Gu Yu-Lin Yao Jia-Qi Chen Long-Bao Lv Ping Zheng Dong-Dong Wu Guo-Jie Zhang Yong-Gang Yao 《Zoological Research》 SCIE CAS CSCD 2019年第6期506-521,共16页
Chinese tree shrews (Tupaia belangeri chinensis) have become an increasingly important experimental animal in biomedical research due to their close relationship to primates. An accurately sequenced and assembled geno... Chinese tree shrews (Tupaia belangeri chinensis) have become an increasingly important experimental animal in biomedical research due to their close relationship to primates. An accurately sequenced and assembled genome is essential for understanding the genetic features and biology of this animal. In this study, we used long-read single-molecule sequencing and high-throughput chromosome conformation capture (Hi-C) technology to obtain a high-qualitychromosome-scale scaffolding of the Chinese tree shrew genome. The new reference genome (KIZ version 2: TS_2.0) resolved problems in presently available tree shrew genomes and enabled accurate identification of large and complex repeat regions, gene structures, and species-specific genomic structural variants. In addition, by sequencing the genomes of six Chinese tree shrew individuals, we produced a comprehensive map of 12.8 M single nucleotide polymorphisms and confirmed that the major histocompatibility complex (MHC) loci and immunoglobulin gene family exhibited high nucleotide diversity in the tree shrew genome. We updated the tree shrew genome database (TreeshrewDB v2.0: http://www.treeshrewdb.org) to include the genome annotation information and genetic variations. The new high-quality reference genome of the Chinese tree shrew and the updated TreeshrewDB will facilitate the use of this animal in many different fields of research. 展开更多
关键词 Tupaia belangeri CHROMOSOMAL LEVEL ASSEMBLY genome POPULATION sequencing Database
下载PDF
Current advances in genome sequencing of common wheat and its ancestral species 被引量:6
15
作者 Xiaoli Shi Hong-Qing Ling 《The Crop Journal》 SCIE CAS CSCD 2018年第1期15-21,共7页
Common wheat is an important and widely cultivated food crop throughout the world.Much progress has been made in regard to wheat genome sequencing in the last decade.Starting from the sequencing of single chromosomes/... Common wheat is an important and widely cultivated food crop throughout the world.Much progress has been made in regard to wheat genome sequencing in the last decade.Starting from the sequencing of single chromosomes/chromosome arms whole genome sequences of common wheat and its diploid and tetraploid ancestors have been decoded along with the development of sequencing and assembling technologies. In this review, we give a brief summary on international progress in wheat genome sequencing, and mainly focus on reviewing the effort and contributions made by Chinese scientists. 展开更多
关键词 genome sequencing DIPLOID WHEAT TETRAPLOID WHEAT TRITICUM AESTIVUM
下载PDF
Rapid and Accurate Sequencing of Enterovirus Genomes Using MinION Nanopore Sequencer 被引量:11
16
作者 WANG Ji KE Yue Hua +6 位作者 ZHANG Yong HUANG Ke Qiang WANG Lei SHEN Xin Xin DONG Xiao Ping XU Wen Bo MA Xue Jun 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2017年第10期718-726,共9页
Objective Knowledge of an enterovirus genome sequence is very important in epidemiological investigation to identify transmission patterns and ascertain the extent of an outbreak. The MinION sequencer is increasingly ... Objective Knowledge of an enterovirus genome sequence is very important in epidemiological investigation to identify transmission patterns and ascertain the extent of an outbreak. The MinION sequencer is increasingly used to sequence various viral pathogens in many clinical situations because of its long reads, portability, real-time accessibility of sequenced data, and very low initial costs. However, information is lacking on MinION sequencing of enterovirus genomes. Methods In this proof-of-concept study using Enterovirus 71 (EV71) and Coxsackievirus A16 (CA16) strains as examples, we established an amplicon-based whole genome sequencing method using MinION. We explored the accuracy, minimum sequencing time, discrimination and high-throughput sequencing ability of MinION, and compared its performance with Sanger sequencing. Results Within the first minute (min) of sequencing, the accuracy of MinION was 98.5% for the single EV71 strain and 94.12%-97.33% for 10 genetically-related CA16 strains. In as little as 14 min, 99% identity was reached for the single EV71 strain, and in 17 min (on average), 99% identity was achieved for 10 CA16 strains in a single run. Conclusion MinION is suitable for whole genome sequencing of enteroviruses with sufficient accuracy and fine discrimination and has the potential as a fast, reliable and convenient method for routine use. 展开更多
关键词 Nanopore sequencing MinION Enterovirus Single molecule sequencing Viral genome sequencing
下载PDF
First detection and complete genome of Soybean chlorotic mottle virus naturally infecting soybean in China by deep sequencing 被引量:1
17
作者 HU Qian-qian LIU Xue-jian +3 位作者 HAN Xue-dong LIU Yong JIANG Jun-xi XIE Yan 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2019年第11期2664-2667,共4页
Soybean chlorotic mottle virus(SbCMV)was first detected from soybean plants in Jiangxi Province of China by high throughput sequencing and was confirmed by PCR.The complete nucleotide sequence of NC113 was determined ... Soybean chlorotic mottle virus(SbCMV)was first detected from soybean plants in Jiangxi Province of China by high throughput sequencing and was confirmed by PCR.The complete nucleotide sequence of NC113 was determined to be 8210 nucleotides,and shared the highest similarity(91.7%)with sequences of SbCMV that was only reported in Japan.It encodes nine putative open reading frames(ORFs Ia,Ib and Ⅱ-Ⅷ),and contains a large intergenic region located at nucleotide 5976-6512 between ORFs VI and VII.Sequence analysis and phylogenetic tree indicated that NC113 is an isolate of SbCMV,and is more related to the soymoviruses Blueberry red ringspot virus(BRRSV),Peanut chlorotic streak virus(PCSV)and Cestrum yellow leaf curling virus(CmYLCV)than to other representative members in the Caulimoviridae family.Field survey of 472 legume plants from Jiangxi and Zhejiang provinces showed SbCMV was only detected from soybean in Nanchang City with a low incidence rate.This is the first report of Soybean chlorotic mottle virus identified in China. 展开更多
关键词 SOYBEAN chlorotic MOTTLE VIRUS Soymovirus genome SEQUENCE SEQUENCE analysis
下载PDF
Incorporating genomic annotation into single-step genomic prediction with imputed whole-genome sequence data 被引量:2
18
作者 TENG Jin-yan YE Shao-pan +8 位作者 GAO Ning CHEN Zi-tao DIAO Shu-qi LI Xiu-jin YUAN Xiao-long ZHANG Hao LI Jia-qi ZHANG Xi-quan ZHANG Zhe 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2022年第4期1126-1136,共11页
Single-step genomic best linear unbiased prediction(ss GBLUP) is now intensively investigated and widely used in livestock breeding due to its beneficial feature of combining information from both genotyped and ungeno... Single-step genomic best linear unbiased prediction(ss GBLUP) is now intensively investigated and widely used in livestock breeding due to its beneficial feature of combining information from both genotyped and ungenotyped individuals in the single model. With the increasing accessibility of whole-genome sequence(WGS) data at the population level, more attention is being paid to the usage of WGS data in ss GBLUP. The predictive ability of ss GBLUP using WGS data might be improved by incorporating biological knowledge from public databases. Thus, we extended ss GBLUP, incorporated genomic annotation information into the model, and evaluated them using a yellow-feathered chicken population as the examples. The chicken population consisted of 1 338 birds with 23 traits, where imputed WGS data including 5 127 612 single nucleotide polymorphisms(SNPs) are available for 895 birds. Considering different combinations of annotation information and models, original ss GBLUP, haplotype-based ss GHBLUP, and four extended ss GBLUP incorporating genomic annotation models were evaluated. Based on the genomic annotation(GRCg6a) of chickens, 3 155 524 and 94 837 SNPs were mapped to genic and exonic regions, respectively. Extended ss GBLUP using genic/exonic SNPs outperformed other models with respect to predictive ability in 15 out of 23 traits, and their advantages ranged from 2.5 to 6.1% compared with original ss GBLUP. In addition, to further enhance the performance of genomic prediction with imputed WGS data, we investigated the genotyping strategies of reference population on ss GBLUP in the chicken population. Comparing two strategies of individual selection for genotyping in the reference population, the strategy of evenly selection by family(SBF) performed slightly better than random selection in most situations. Overall, we extended genomic prediction models that can comprehensively utilize WGS data and genomic annotation information in the framework of ss GBLUP, and validated the idea that properly handling the genomic annotation information and WGS data increased the predictive ability of ss GBLUP. Moreover, while using WGS data, the genotyping strategy of maximizing the expected genetic relationship between the reference and candidate population could further improve the predictive ability of ss GBLUP. The results from this study shed light on the comprehensive usage of genomic annotation information in WGS-based single-step genomic prediction. 展开更多
关键词 genomic selection prior information sequencing data genotype imputation HAPLOTYPE
下载PDF
Current status and future perspectives for sequencing livestock genomes 被引量:1
19
作者 Yongsheng Bai Maureen Sartor James Cavalcoli 《Journal of Animal Science and Biotechnology》 SCIE CAS 2012年第1期10-15,共6页
Only in recent years, the draft sequences for several agricultural animals have been assembled. Assembling an individual animal's entire genome sequence or specific region(s) of interest is increasingly important f... Only in recent years, the draft sequences for several agricultural animals have been assembled. Assembling an individual animal's entire genome sequence or specific region(s) of interest is increasingly important for agricultura researchers to perform genetic comparisons between animals with different performance. We review the current status for several sequenced agricultural species and suggest that next generation sequencing (NGS) technology with decreased sequencing cost and increased speed of sequencing can benefit agricultural researchers. By taking advantage of advanced NGS technologies, genes and chromosomal regions that are more labile to the influence of environmental factors could be pinpointed. A more long term goal would be addressing the question of how animals respond at the molecular and cellular levels to different environmental models (e.g. nutrition). Upon revealing important genes and gene-environment interactions, the rate of genetic improvement can also be accelerated. It is clear that NGS technologies will be able to assist animal scientists to efficiently raise animals and to better prevent infectious diseases so that overall costs of animal production can be decreased. 展开更多
关键词 livestock genomes next-generation sequencing technology NUTRITION
下载PDF
Identification and characterization of short tandem repeats in the Tibetan macaque genome based on resequencing data 被引量:1
20
作者 San-Xu Liu Wei Hou +4 位作者 Xue-Yan Zhang Chang-Jun Peng Bi-Song Yue Zhen-Xin Fan Jing Li 《Zoological Research》 SCIE CAS CSCD 2018年第4期291-300,共10页
The Tibetan macaque, which is endemic to China, is currently listed as a Near Endangered primate species by the International Union for Conservation of Nature (IUCN)(2017). Short tandem repeats (STRs) refer to r... The Tibetan macaque, which is endemic to China, is currently listed as a Near Endangered primate species by the International Union for Conservation of Nature (IUCN)(2017). Short tandem repeats (STRs) refer to repetitive elements of genome sequence that range in length from 1-6 bp. They are found in many organisms and are widely applied in population genetic studies. To clarify the distribution characteristics of genome-wide STRs and understand their variation among Tibetan macaques, we conducted a genome-wide survey of STRs with next-generation sequencing of five macaque samples. A total of 1 077 790 perfect STRs were mined from our assembly, with an N50 of 4 966 bp. Mono-nucleotide repeats were the most abundant, followed by tetra- and di-nucleotide repeats. Analysis of GC content and repeats showed consistent results with other macaques. Furthermore, using STR analysis software (IobSTR), we found that the proportion of base pair deletions in the STRs was greater than that of insertions in the five Tibetan macaque individuals (P〈0.05, t-test). We also found a greater number of homozygous STRs than heterozygous STRs (P〈0.05, t-test), with the Emei and Jianyang Tibetan macaques showing more heterozygous loci than Huangshan Tibetan macaques. The proportion of insertions and mean variation of alleles in the Emei and Jianyang individuals were slightly higher than those in the Huangshan individuals, thus revealing differences in STR allele size between the two populations The polymorphic STR loci identified based on the reference genome showed good amplification efficiency and could be used to study population genetics in Tibetan macaques. The neighbor-joining tree classified the five macaques into two different branches according to their geographical origin, indicating high genetic differentiation between the Huangshan and Sichuan populations. We elucidated the distribution characteristics of STRs in the Tibetan macaque genome and provided an effective method for screening polymorphic STRs. Our results also lay a foundation for future genetic variation studies of macaques. 展开更多
关键词 Tibetan macaque (Macaca thibetana) genome Short tandem repeats Variation analysis POLYMORPHISM Next-generation sequencing
下载PDF
上一页 1 2 169 下一页 到第
使用帮助 返回顶部