Mobile technology is developing significantly.Mobile phone technologies have been integrated into the healthcare industry to help medical practitioners.Typically,computer vision models focus on image detection and cla...Mobile technology is developing significantly.Mobile phone technologies have been integrated into the healthcare industry to help medical practitioners.Typically,computer vision models focus on image detection and classification issues.MobileNetV2 is a computer vision model that performs well on mobile devices,but it requires cloud services to process biometric image information and provide predictions to users.This leads to increased latency.Processing biometrics image datasets on mobile devices will make the prediction faster,but mobiles are resource-restricted devices in terms of storage,power,and computational speed.Hence,a model that is small in size,efficient,and has good prediction quality for biometrics image classification problems is required.Quantizing pre-trained CNN(PCNN)MobileNetV2 architecture combined with a Support Vector Machine(SVM)compacts the model representation and reduces the computational cost and memory requirement.This proposed novel approach combines quantized pre-trained CNN(PCNN)MobileNetV2 architecture with a Support Vector Machine(SVM)to represent models efficiently with low computational cost and memory.Our contributions include evaluating three CNN models for ocular disease identification in transfer learning and deep feature plus SVM approaches,showing the superiority of deep features from MobileNetV2 and SVM classification models,comparing traditional methods,exploring six ocular diseases and normal classification with 20,111 images postdata augmentation,and reducing the number of trainable models.The model is trained on ocular disorder retinal fundus image datasets according to the severity of six age-related macular degeneration(AMD),one of the most common eye illnesses,Cataract,Diabetes,Glaucoma,Hypertension,andMyopia with one class Normal.From the experiment outcomes,it is observed that the suggested MobileNetV2-SVM model size is compressed.The testing accuracy for MobileNetV2-SVM,InceptionV3,and MobileNetV2 is 90.11%,86.88%,and 89.76%respectively while MobileNetV2-SVM,InceptionV3,and MobileNetV2 accuracy are observed to be 92.59%,83.38%,and 90.16%,respectively.The proposed novel technique can be used to classify all biometric medical image datasets on mobile devices.展开更多
Falls are a major cause of disability and even death in the elderly,and fall detection can effectively reduce the damage.Compared with cameras and wearable sensors,Wi-Fi devices can protect user privacy and are inexpe...Falls are a major cause of disability and even death in the elderly,and fall detection can effectively reduce the damage.Compared with cameras and wearable sensors,Wi-Fi devices can protect user privacy and are inexpensive and easy to deploy.Wi-Fi devices sense user activity by analyzing the channel state information(CSI)of the received signal,which makes fall detection possible.We propose a fall detection system based on commercial Wi-Fi devices which achieves good performance.In the feature extraction stage,we select the discrete wavelet transform(DWT)spectrum as the feature for activity classification,which can balance the temporal and spatial resolution.In the feature classification stage,we design a deep learning model based on convolutional neural networks,which has better performance compared with other traditional machine learning models.Experimental results show our work achieves a false alarm rate of 4.8%and a missed alarm rate of 1.9%.展开更多
The paper describes the application of an ANN based approach to the identification of the parameters relevant to the steady state behavior of composite power electronic device models of circuit simulation software. ...The paper describes the application of an ANN based approach to the identification of the parameters relevant to the steady state behavior of composite power electronic device models of circuit simulation software. The identification of model parameters of IGBT in PSPICE using BP neural network is illustrated.展开更多
The security issues of industrial control systems(ICSs)have become increasingly prevalent.As an important part of ICS security,honeypots and anti-honeypots have become the focus of offensive and defensive confrontatio...The security issues of industrial control systems(ICSs)have become increasingly prevalent.As an important part of ICS security,honeypots and anti-honeypots have become the focus of offensive and defensive confrontation.However,research on ICS honeypots still lacks breakthroughs,and it is difficult to simulate real ICS devices perfectly.In this paper,we studied ICS honeypots to identify and address their weaknesses.First,an intelligent honeypot identification framework is proposed,based on which feature data type requirements and feature data acquisition for honeypot identification is studied.Inspired by vulnerability mining,we propose a feature acquisition approach based on lightweight fuzz testing,which utilizes the differences in error handling between the ICS device and the ICS honeypot.By combining the proposed method with common feature acquisition approaches,the integrated feature data can be obtained.The experimental results show that the feature data acquired is effective for honeypot identification.展开更多
Material identification is a technology that can help to identify the type of target material.Existing approaches depend on expensive instruments,complicated pre-treatments and professional users.It is difficult to fi...Material identification is a technology that can help to identify the type of target material.Existing approaches depend on expensive instruments,complicated pre-treatments and professional users.It is difficult to find a substantial yet effective material identification method to meet the daily use demands.In this paper,we introduce a Wi-Fi-signal based material identification approach by measuring the amplitude ratio and phase difference as the key features in the material classifier,which can significantly reduce the cost and guarantee a high level accuracy.In practical measurement of WiFi based material identification,these two features are commonly interrupted by the software/hardware noise of the channel state information(CSI).To eliminate the inherent noise of CSI,we design a denoising method based on the antenna array of the commercial off-the-shelf(COTS)Wi-Fi device.After that,the amplitude ratios and phase differences can be more stably utilized to classify the materials.We implement our system and evaluate its ability to identify materials in indoor environment.The result shows that our system can identify 10 commonly seen liquids with an average accuracy of 98.8%.It can also identify similar liquids with an overall accuracy higher than 95%,such as various concentrations of salt water.展开更多
The wide diffusion of mobile devices that natively support ad hoc communication technologies has led to several protocols for enabling and optimizing Mobile Ad Hoc Networks (MANETs). Nevertheless, the actual utilizati...The wide diffusion of mobile devices that natively support ad hoc communication technologies has led to several protocols for enabling and optimizing Mobile Ad Hoc Networks (MANETs). Nevertheless, the actual utilization of MANETs in real life seems limited due to the lack of protocols for the automatic creation and evolution of ad hoc networks. Recently, a novel P2P protocol named Wi-Fi Direct has been proposed and standardized by the Wi-Fi Alliance to facilitate nearby devices’ interconnection. Wi-Fi Direct provides high-performance direct communication among devices, includes different energy management mechanisms, and is now available in most Android mobile devices. However, the current implementation of Wi-Fi Direct on Android has several limitations, making the Wi-Fi Direct network only be a one-hop ad-hoc network. This paper aims to develop a new framework for multi-hop ad hoc networking using Wi-Fi Direct in Android smart devices. The framework includes a connection establishment protocol and a group management protocol. Simulations validate the proposed framework on the OMNeT++ simulator. We analyzed the framework by varying transmission range, number of hops, and buffer size. The results indicate that the framework provides an eventual 100% packet delivery for different transmission ranges and hop count values. The buffer size has enough space for all packets. However, as buffer size decreases, the packet delivery decreases proportionally.展开更多
Eased on the mechanism of temperature tactile sensing of human finger,a heat flux tactile sensor com- posed of a thermostat module and a heat flux sensor is designed to identify material thermal properties. The ther- ...Eased on the mechanism of temperature tactile sensing of human finger,a heat flux tactile sensor com- posed of a thermostat module and a heat flux sensor is designed to identify material thermal properties. The ther- mostat module maintains the sensor temperature invariable, and the heat flux sensor(Peltier device) detects the heat flux temperature difference between the thermostat module and the object surface. Two different modes of the heat flux tactile sensor are proposed, and they are simulated and experimented for different material objects. The results indicate that the heat flux tactile sensor can effectively identify different thermal properties.展开更多
With the metaverse being the development direction of the next generation Internet,the popularity of intelligent devices,and the maturity of various emerging technologies,more and more intelligent devices try to conne...With the metaverse being the development direction of the next generation Internet,the popularity of intelligent devices,and the maturity of various emerging technologies,more and more intelligent devices try to connect to the Internet,which poses a major threat to the management and security protection of network equipment.At present,the mainstream method of network equipment identification in the metaverse is to obtain the network traffic data generated in the process of device communication,extract the device features through analysis and processing,and identify the device based on a variety of learning algorithms.Such methods often require manual participation,and it is difficult to capture the small differences between similar devices,leading to identification errors.Therefore,we propose a deep learning device recognition method based on a spatial attention mechanism.Firstly,we extract the required feature fields from the acquired network traffic data.Then,we normalize the data and convert it into grayscale images.After that,we add a spatial attention mechanism to CNN and MLP respectively to increase the difference between similar network devices and further improve the recognition accuracy.Finally,we identify devices based on the deep learning model.A large number of experiments were carried out on 31 types of network devices such as web cameras,wireless routers,and smartwatches.The results show that the accuracy of the proposed recognition method based on the spatial attention mechanism is increased by 0.8%and 2.0%,respectively,compared with the recognition method based only on the deep learning model under the CNN and MLP models.The method proposed in this paper is significantly superior to the existing method of device-type recognition based only on a deep learning model.展开更多
基于现代会议管理的需求,设计和实现一种C/S和B/S混合部署的会议管理系统。包括会议管理服务中心和若干个会议现场,会议管理服务中心包括数据服务器、应用服务器、Web服务器、通信网关和出口路由器;会议现场包括若干个便携式电脑、RFID(...基于现代会议管理的需求,设计和实现一种C/S和B/S混合部署的会议管理系统。包括会议管理服务中心和若干个会议现场,会议管理服务中心包括数据服务器、应用服务器、Web服务器、通信网关和出口路由器;会议现场包括若干个便携式电脑、RFID(Radio Frequency Identification)读卡器、二维码阅读器、信息显示发布设备、现场WLAN设备及用户终端。使用RIA(Rich Internet Application)技术优化了B/S界面,应用RFID对会议过程中的细节进行监控,借助SAAS(Software as a Service)模式实现会议管理按需配置和快速部署。该系统显著提高了会议管理效率。展开更多
文摘Mobile technology is developing significantly.Mobile phone technologies have been integrated into the healthcare industry to help medical practitioners.Typically,computer vision models focus on image detection and classification issues.MobileNetV2 is a computer vision model that performs well on mobile devices,but it requires cloud services to process biometric image information and provide predictions to users.This leads to increased latency.Processing biometrics image datasets on mobile devices will make the prediction faster,but mobiles are resource-restricted devices in terms of storage,power,and computational speed.Hence,a model that is small in size,efficient,and has good prediction quality for biometrics image classification problems is required.Quantizing pre-trained CNN(PCNN)MobileNetV2 architecture combined with a Support Vector Machine(SVM)compacts the model representation and reduces the computational cost and memory requirement.This proposed novel approach combines quantized pre-trained CNN(PCNN)MobileNetV2 architecture with a Support Vector Machine(SVM)to represent models efficiently with low computational cost and memory.Our contributions include evaluating three CNN models for ocular disease identification in transfer learning and deep feature plus SVM approaches,showing the superiority of deep features from MobileNetV2 and SVM classification models,comparing traditional methods,exploring six ocular diseases and normal classification with 20,111 images postdata augmentation,and reducing the number of trainable models.The model is trained on ocular disorder retinal fundus image datasets according to the severity of six age-related macular degeneration(AMD),one of the most common eye illnesses,Cataract,Diabetes,Glaucoma,Hypertension,andMyopia with one class Normal.From the experiment outcomes,it is observed that the suggested MobileNetV2-SVM model size is compressed.The testing accuracy for MobileNetV2-SVM,InceptionV3,and MobileNetV2 is 90.11%,86.88%,and 89.76%respectively while MobileNetV2-SVM,InceptionV3,and MobileNetV2 accuracy are observed to be 92.59%,83.38%,and 90.16%,respectively.The proposed novel technique can be used to classify all biometric medical image datasets on mobile devices.
文摘Falls are a major cause of disability and even death in the elderly,and fall detection can effectively reduce the damage.Compared with cameras and wearable sensors,Wi-Fi devices can protect user privacy and are inexpensive and easy to deploy.Wi-Fi devices sense user activity by analyzing the channel state information(CSI)of the received signal,which makes fall detection possible.We propose a fall detection system based on commercial Wi-Fi devices which achieves good performance.In the feature extraction stage,we select the discrete wavelet transform(DWT)spectrum as the feature for activity classification,which can balance the temporal and spatial resolution.In the feature classification stage,we design a deep learning model based on convolutional neural networks,which has better performance compared with other traditional machine learning models.Experimental results show our work achieves a false alarm rate of 4.8%and a missed alarm rate of 1.9%.
文摘The paper describes the application of an ANN based approach to the identification of the parameters relevant to the steady state behavior of composite power electronic device models of circuit simulation software. The identification of model parameters of IGBT in PSPICE using BP neural network is illustrated.
基金This work is supported by the National Key Research and Development Plan(No.2018YFB0803504)the National Natural Science Foundation of China(Nos.61702223,61702220,61871140,61872420,61602210,U1636215)+6 种基金the Guangdong Province Key Area R&D Program of China(No.2019B010137004,2019B010136001)the Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme(2019)the Guangdong Basic and Applied Basic Research Foundation(2020A1515010450)the Science and Technology Planning Project of Guangdong(2017A040405029,2018KTSCX016,2019A050510024)the Science and Technology Planning Project of Guangzhou(201902010041)the Fundamental Research Funds for the Central Universities(21617408,21619404)the Opening Project of Shanghai Trusted Industrial Control Platform(TICPSH202003014-ZC).
文摘The security issues of industrial control systems(ICSs)have become increasingly prevalent.As an important part of ICS security,honeypots and anti-honeypots have become the focus of offensive and defensive confrontation.However,research on ICS honeypots still lacks breakthroughs,and it is difficult to simulate real ICS devices perfectly.In this paper,we studied ICS honeypots to identify and address their weaknesses.First,an intelligent honeypot identification framework is proposed,based on which feature data type requirements and feature data acquisition for honeypot identification is studied.Inspired by vulnerability mining,we propose a feature acquisition approach based on lightweight fuzz testing,which utilizes the differences in error handling between the ICS device and the ICS honeypot.By combining the proposed method with common feature acquisition approaches,the integrated feature data can be obtained.The experimental results show that the feature data acquired is effective for honeypot identification.
基金This work supports in part by National Key R&D Program of China(No.2018YFB2100400)National Science Foundation of China(No.61872100)+2 种基金Industrial Internet Innovation and Development Project of China(2019)PCL Future Regional Network Facilities for Large-scale Experiments and Applications(PCL2018KP001)Guangdong Higher Education Innovation Team(NO.2020KCXTD007).
文摘Material identification is a technology that can help to identify the type of target material.Existing approaches depend on expensive instruments,complicated pre-treatments and professional users.It is difficult to find a substantial yet effective material identification method to meet the daily use demands.In this paper,we introduce a Wi-Fi-signal based material identification approach by measuring the amplitude ratio and phase difference as the key features in the material classifier,which can significantly reduce the cost and guarantee a high level accuracy.In practical measurement of WiFi based material identification,these two features are commonly interrupted by the software/hardware noise of the channel state information(CSI).To eliminate the inherent noise of CSI,we design a denoising method based on the antenna array of the commercial off-the-shelf(COTS)Wi-Fi device.After that,the amplitude ratios and phase differences can be more stably utilized to classify the materials.We implement our system and evaluate its ability to identify materials in indoor environment.The result shows that our system can identify 10 commonly seen liquids with an average accuracy of 98.8%.It can also identify similar liquids with an overall accuracy higher than 95%,such as various concentrations of salt water.
文摘The wide diffusion of mobile devices that natively support ad hoc communication technologies has led to several protocols for enabling and optimizing Mobile Ad Hoc Networks (MANETs). Nevertheless, the actual utilization of MANETs in real life seems limited due to the lack of protocols for the automatic creation and evolution of ad hoc networks. Recently, a novel P2P protocol named Wi-Fi Direct has been proposed and standardized by the Wi-Fi Alliance to facilitate nearby devices’ interconnection. Wi-Fi Direct provides high-performance direct communication among devices, includes different energy management mechanisms, and is now available in most Android mobile devices. However, the current implementation of Wi-Fi Direct on Android has several limitations, making the Wi-Fi Direct network only be a one-hop ad-hoc network. This paper aims to develop a new framework for multi-hop ad hoc networking using Wi-Fi Direct in Android smart devices. The framework includes a connection establishment protocol and a group management protocol. Simulations validate the proposed framework on the OMNeT++ simulator. We analyzed the framework by varying transmission range, number of hops, and buffer size. The results indicate that the framework provides an eventual 100% packet delivery for different transmission ranges and hop count values. The buffer size has enough space for all packets. However, as buffer size decreases, the packet delivery decreases proportionally.
基金Supported by the National High Technology Research and Development Program of China(″863″Program)(2009AA01Z314,2009AA01Z311)the Jiangsu Province Natural Science Foundation(BK2009272)theJiangsu Province″333″Program~~
文摘Eased on the mechanism of temperature tactile sensing of human finger,a heat flux tactile sensor com- posed of a thermostat module and a heat flux sensor is designed to identify material thermal properties. The ther- mostat module maintains the sensor temperature invariable, and the heat flux sensor(Peltier device) detects the heat flux temperature difference between the thermostat module and the object surface. Two different modes of the heat flux tactile sensor are proposed, and they are simulated and experimented for different material objects. The results indicate that the heat flux tactile sensor can effectively identify different thermal properties.
基金supported by the National Key Research and Development Program of China(No.2022YFB3102900)the National Natural Science Foundation of China(No.U1804263,62172435 and 62002386)the Zhongyuan Science and Technology Innovation Leading Talent Project,China(No.214200510019)
文摘With the metaverse being the development direction of the next generation Internet,the popularity of intelligent devices,and the maturity of various emerging technologies,more and more intelligent devices try to connect to the Internet,which poses a major threat to the management and security protection of network equipment.At present,the mainstream method of network equipment identification in the metaverse is to obtain the network traffic data generated in the process of device communication,extract the device features through analysis and processing,and identify the device based on a variety of learning algorithms.Such methods often require manual participation,and it is difficult to capture the small differences between similar devices,leading to identification errors.Therefore,we propose a deep learning device recognition method based on a spatial attention mechanism.Firstly,we extract the required feature fields from the acquired network traffic data.Then,we normalize the data and convert it into grayscale images.After that,we add a spatial attention mechanism to CNN and MLP respectively to increase the difference between similar network devices and further improve the recognition accuracy.Finally,we identify devices based on the deep learning model.A large number of experiments were carried out on 31 types of network devices such as web cameras,wireless routers,and smartwatches.The results show that the accuracy of the proposed recognition method based on the spatial attention mechanism is increased by 0.8%and 2.0%,respectively,compared with the recognition method based only on the deep learning model under the CNN and MLP models.The method proposed in this paper is significantly superior to the existing method of device-type recognition based only on a deep learning model.
文摘基于现代会议管理的需求,设计和实现一种C/S和B/S混合部署的会议管理系统。包括会议管理服务中心和若干个会议现场,会议管理服务中心包括数据服务器、应用服务器、Web服务器、通信网关和出口路由器;会议现场包括若干个便携式电脑、RFID(Radio Frequency Identification)读卡器、二维码阅读器、信息显示发布设备、现场WLAN设备及用户终端。使用RIA(Rich Internet Application)技术优化了B/S界面,应用RFID对会议过程中的细节进行监控,借助SAAS(Software as a Service)模式实现会议管理按需配置和快速部署。该系统显著提高了会议管理效率。