Despite the planned installation and operations of the traditional IEEE 802.11 networks,they still experience degraded performance due to the number of inefficiencies.One of the main reasons is the received signal str...Despite the planned installation and operations of the traditional IEEE 802.11 networks,they still experience degraded performance due to the number of inefficiencies.One of the main reasons is the received signal strength indicator(RSSI)association problem,in which the user remains connected to the access point(AP)unless the RSSI becomes too weak.In this paper,we propose a multi-criterion association(WiMA)scheme based on software defined networking(SDN)in Wi-Fi networks.An association solution based on multi-criterion such as AP load,RSSI,and channel occupancy is proposed to satisfy the quality of service(QoS).SDNhaving an overall view of the network takes the association and reassociation decisions making the handoffs smooth in throughput performance.To implementWiMA extensive simulations runs are carried out on Mininet-NS3-Wi-Fi network simulator.The performance evaluation shows that the WiMA significantly reduces the average number of retransmissions by 5%–30%and enhances the throughput by 20%–50%,hence maintaining user fairness and accommodating more wireless devices and traffic load in the network,when compared to traditional client-driven(CD)approach and state of the art Wi-Balance approach.展开更多
The Internet has penetrated all aspects of human society and has promoted social progress.Cyber-crimes in many forms are commonplace and are dangerous to society and national security.Cybersecurity has become a major ...The Internet has penetrated all aspects of human society and has promoted social progress.Cyber-crimes in many forms are commonplace and are dangerous to society and national security.Cybersecurity has become a major concern for citizens and governments.The Internet functions and software applications play a vital role in cybersecurity research and practice.Most of the cyber-attacks are based on exploits in system or application software.It is of utmost urgency to investigate software security problems.The demand for Wi-Fi applications is proliferating but the security problem is growing,requiring an optimal solution from researchers.To overcome the shortcomings of the wired equivalent privacy(WEP)algorithm,the existing literature proposed security schemes forWi-Fi protected access(WPA)/WPA2.However,in practical applications,the WPA/WPA2 scheme still has some weaknesses that attackers exploit.To destroy a WPA/WPA2 security,it is necessary to get a PSK pre-shared key in pre-shared key mode,or an MSK master session key in the authentication mode.Brute-force cracking attacks can get a phase-shift keying(PSK)or a minimum shift keying(MSK).In real-world applications,many wireless local area networks(LANs)use the pre-shared key mode.Therefore,brute-force cracking of WPA/WPA2-PSK is important in that context.This article proposes a new mechanism to crack theWi-Fi password using a graphical processing unit(GPU)and enhances the efficiency through parallel computing of multiple GPU chips.Experimental results show that the proposed algorithm is effective and provides a procedure to enhance the security of Wi-Fi networks.展开更多
This research is about the nuisances of social media applications on a Wi-Fi network at a university campus in Ghana. The aim was to access the security risk on the network, the speed of the network, and the data cons...This research is about the nuisances of social media applications on a Wi-Fi network at a university campus in Ghana. The aim was to access the security risk on the network, the speed of the network, and the data consumption of those platforms on the network. Network Mapper (Nmap Zenmap) Graphical User Interface 7.80 application was used to scan the various social media platforms to identify the protocols, ports, services, etc. to enable in accessing the vulnerability of the network. Data consumption of users’ mobile devices was collected and analyzed. Device Accounting (DA) based on the various social media applications was used. The results of the analysis revealed that the network is prone to attacks due to the nature of the protocols, ports, and services on social media applications. The numerous users with average monthly data consumption per user of 4 gigabytes, 300 megabytes on social media alone are a clear indication of high traffic as well as the cost of maintaining the network. A URL filtering of the social media websites was proposed on Rockus Outdoor AP to help curb the nuisance.展开更多
3GPP在版本16(R16,Release 16)中升级了最小化路测(MDT,minimization of drive test)技术,提出移动终端可利用4G/5G网络自主上报Wi-Fi信号的接收信号强度指示(RSSI,received signal strength indicator),为运营商度量Wi-Fi网络的覆盖率...3GPP在版本16(R16,Release 16)中升级了最小化路测(MDT,minimization of drive test)技术,提出移动终端可利用4G/5G网络自主上报Wi-Fi信号的接收信号强度指示(RSSI,received signal strength indicator),为运营商度量Wi-Fi网络的覆盖率带来了可能性。然而,现有基于MDT技术的网络覆盖度量方法严重依赖GPS提供的位置坐标,但全球定位系统(GPS,global positioning system)不能提供室内精准定位,无法用于室内Wi-Fi网络的覆盖度量。为此,提出了一种不依赖位置坐标的RSSI聚类方法,充分利用室内相近位置RSSI的统计相似性,区分不同位置的RSSI测量差异,在无位置坐标条件下准确估计出室内Wi-Fi网络的覆盖率。实验结果表明,所提方法估计的覆盖率与基于真实位置坐标测量的覆盖率相近,度量准确度明显优于现有的其他方法。展开更多
Immune changes and inflammatory responses have been identified as central events in the pathological process of spinal co rd injury.They can greatly affect nerve regeneration and functional recovery.However,there is s...Immune changes and inflammatory responses have been identified as central events in the pathological process of spinal co rd injury.They can greatly affect nerve regeneration and functional recovery.However,there is still limited understanding of the peripheral immune inflammato ry response in spinal cord inju ry.In this study.we obtained microRNA expression profiles from the peripheral blood of patients with spinal co rd injury using high-throughput sequencing.We also obtained the mRNA expression profile of spinal cord injury patients from the Gene Expression Omnibus(GEO)database(GSE151371).We identified 54 differentially expressed microRNAs and 1656 diffe rentially expressed genes using bioinformatics approaches.Functional enrichment analysis revealed that various common immune and inflammation-related signaling pathways,such as neutrophil extracellular trap formation pathway,T cell receptor signaling pathway,and nuclear factor-κB signal pathway,we re abnormally activated or inhibited in spinal cord inju ry patient samples.We applied an integrated strategy that combines weighted gene co-expression network analysis,LASSO logistic regression,and SVM-RFE algorithm and identified three biomarke rs associated with spinal cord injury:ANO10,BST1,and ZFP36L2.We verified the expression levels and diagnostic perfo rmance of these three genes in the original training dataset and clinical samples through the receiver operating characteristic curve.Quantitative polymerase chain reaction results showed that ANO20 and BST1 mRNA levels were increased and ZFP36L2 mRNA was decreased in the peripheral blood of spinal cord injury patients.We also constructed a small RNA-mRNA interaction network using Cytoscape.Additionally,we evaluated the proportion of 22 types of immune cells in the peripheral blood of spinal co rd injury patients using the CIBERSORT tool.The proportions of naive B cells,plasma cells,monocytes,and neutrophils were increased while the proportions of memory B cells,CD8^(+)T cells,resting natural killer cells,resting dendritic cells,and eosinophils were markedly decreased in spinal cord injury patients increased compared with healthy subjects,and ANO10,BST1 and ZFP26L2we re closely related to the proportion of certain immune cell types.The findings from this study provide new directions for the development of treatment strategies related to immune inflammation in spinal co rd inju ry and suggest that ANO10,BST2,and ZFP36L2 are potential biomarkers for spinal cord injury.The study was registe red in the Chinese Clinical Trial Registry(registration No.ChiCTR2200066985,December 12,2022).展开更多
Optical neural networks have significant advantages in terms of power consumption,parallelism,and high computing speed,which has intrigued extensive attention in both academic and engineering communities.It has been c...Optical neural networks have significant advantages in terms of power consumption,parallelism,and high computing speed,which has intrigued extensive attention in both academic and engineering communities.It has been considered as one of the powerful tools in promoting the fields of imaging processing and object recognition.However,the existing optical system architecture cannot be reconstructed to the realization of multi-functional artificial intelligence systems simultaneously.To push the development of this issue,we propose the pluggable diffractive neural networks(P-DNN),a general paradigm resorting to the cascaded metasurfaces,which can be applied to recognize various tasks by switching internal plug-ins.As the proof-of-principle,the recognition functions of six types of handwritten digits and six types of fashions are numerical simulated and experimental demonstrated at near-infrared regimes.Encouragingly,the proposed paradigm not only improves the flexibility of the optical neural networks but paves the new route for achieving high-speed,low-power and versatile artificial intelligence systems.展开更多
Background In early adolescence,youth are highly prone to suicidal behaviours.Identifying modifiable risk factors during this critical phase is a priority to inform effective suicide prevention strategies.Aims To expl...Background In early adolescence,youth are highly prone to suicidal behaviours.Identifying modifiable risk factors during this critical phase is a priority to inform effective suicide prevention strategies.Aims To explore the risk and protective factors of suicidal behaviours(ie,suicidal ideation,plans and attempts)in early adolescence in China using a social-ecological perspective.Methods Using data from the cross-sectional project‘Healthy and Risky Behaviours Among Middle School Students in Anhui Province,China',stratified random cluster sampling was used to select 5724 middle school students who had completed self-report questionnaires in November 2020.Network analysis was employed to examine the correlates of suicidal ideation,plans and attempts at four levels,namely individual(sex,academic performance,serious physical llness/disability,history of self-harm,depression,impulsivity,sleep problems,resilience),family(family economic status,relationship with mother,relationship with father,family violence,childhood abuse,parental mental illness),school(relationship with teachers,relationship with classmates,school-bullying victimisation and perpetration)and social(social support,satisfaction with society).Results In total,37.9%,19.0%and 5.5%of the students reported suicidal ideation,plans and attempts in the past 6 months,respectively.The estimated network revealed that suicidal ideation,plans and attempts were collectively associated with a history of self-harm,sleep problems,childhood abuse,school bullying and victimisation.Centrality analysis indicated that the most influential nodes in the network were history of self-harm and childhood abuse.Notably,the network also showed unique correlates of suicidal ideation(sex,weight=0.60;impulsivity,weight=0.24;family violence,weight=0.17;relationship with teachers,weight=-0.03;school-bullying perpetration,weight=0.22),suicidal plans(social support,weight=-0.15)and suicidal attempts(relationship with mother,weight=-0.10;parental mental llness,weight=0.61).Conclusions This study identified the correlates of suicidal ideation,plans and attempts,and provided practical implications for suicide prevention for young adolescents in China.Firstly,this study highlighted the importance of joint interventions across multiple departments.Secondly,the common risk factors of suicidal ideation,plans and attempts were elucidated.Thirdly,this study proposed target interventions to address the unique influencing factors of suicidal ideation,plans and attempts.展开更多
Convolutional neural networks depend on deep network architectures to extract accurate information for image super‐resolution.However,obtained information of these con-volutional neural networks cannot completely exp...Convolutional neural networks depend on deep network architectures to extract accurate information for image super‐resolution.However,obtained information of these con-volutional neural networks cannot completely express predicted high‐quality images for complex scenes.A dynamic network for image super‐resolution(DSRNet)is presented,which contains a residual enhancement block,wide enhancement block,feature refine-ment block and construction block.The residual enhancement block is composed of a residual enhanced architecture to facilitate hierarchical features for image super‐resolution.To enhance robustness of obtained super‐resolution model for complex scenes,a wide enhancement block achieves a dynamic architecture to learn more robust information to enhance applicability of an obtained super‐resolution model for varying scenes.To prevent interference of components in a wide enhancement block,a refine-ment block utilises a stacked architecture to accurately learn obtained features.Also,a residual learning operation is embedded in the refinement block to prevent long‐term dependency problem.Finally,a construction block is responsible for reconstructing high‐quality images.Designed heterogeneous architecture can not only facilitate richer structural information,but also be lightweight,which is suitable for mobile digital devices.Experimental results show that our method is more competitive in terms of performance,recovering time of image super‐resolution and complexity.The code of DSRNet can be obtained at https://github.com/hellloxiaotian/DSRNet.展开更多
Accurately predicting fluid forces acting on the sur-face of a structure is crucial in engineering design.However,this task becomes particularly challenging in turbulent flow,due to the complex and irregular changes i...Accurately predicting fluid forces acting on the sur-face of a structure is crucial in engineering design.However,this task becomes particularly challenging in turbulent flow,due to the complex and irregular changes in the flow field.In this study,we propose a novel deep learning method,named mapping net-work-coordinated stacked gated recurrent units(MSU),for pre-dicting pressure on a circular cylinder from velocity data.Specifi-cally,our coordinated learning strategy is designed to extract the most critical velocity point for prediction,a process that has not been explored before.In our experiments,MSU extracts one point from a velocity field containing 121 points and utilizes this point to accurately predict 100 pressure points on the cylinder.This method significantly reduces the workload of data measure-ment in practical engineering applications.Our experimental results demonstrate that MSU predictions are highly similar to the real turbulent data in both spatio-temporal and individual aspects.Furthermore,the comparison results show that MSU predicts more precise results,even outperforming models that use all velocity field points.Compared with state-of-the-art methods,MSU has an average improvement of more than 45%in various indicators such as root mean square error(RMSE).Through comprehensive and authoritative physical verification,we estab-lished that MSU’s prediction results closely align with pressure field data obtained in real turbulence fields.This confirmation underscores the considerable potential of MSU for practical applications in real engineering scenarios.The code is available at https://github.com/zhangzm0128/MSU.展开更多
The demand for adopting neural networks in resource-constrained embedded devices is continuously increasing.Quantization is one of the most promising solutions to reduce computational cost and memory storage on embedd...The demand for adopting neural networks in resource-constrained embedded devices is continuously increasing.Quantization is one of the most promising solutions to reduce computational cost and memory storage on embedded devices.In order to reduce the complexity and overhead of deploying neural networks on Integeronly hardware,most current quantization methods use a symmetric quantization mapping strategy to quantize a floating-point neural network into an integer network.However,although symmetric quantization has the advantage of easier implementation,it is sub-optimal for cases where the range could be skewed and not symmetric.This often comes at the cost of lower accuracy.This paper proposed an activation redistribution-based hybrid asymmetric quantizationmethod for neural networks.The proposedmethod takes data distribution into consideration and can resolve the contradiction between the quantization accuracy and the ease of implementation,balance the trade-off between clipping range and quantization resolution,and thus improve the accuracy of the quantized neural network.The experimental results indicate that the accuracy of the proposed method is 2.02%and 5.52%higher than the traditional symmetric quantization method for classification and detection tasks,respectively.The proposed method paves the way for computationally intensive neural network models to be deployed on devices with limited computing resources.Codes will be available on https://github.com/ycjcy/Hybrid-Asymmetric-Quantization.展开更多
基金supported by the“Human Resources Program in Energy Technology”of the Korea Institute of Energy Technology Evaluation and Planning(KETEP),granted financial resources from the Ministry of Trade,Industry&Energy,Republic of Korea(No.20204010600090).
文摘Despite the planned installation and operations of the traditional IEEE 802.11 networks,they still experience degraded performance due to the number of inefficiencies.One of the main reasons is the received signal strength indicator(RSSI)association problem,in which the user remains connected to the access point(AP)unless the RSSI becomes too weak.In this paper,we propose a multi-criterion association(WiMA)scheme based on software defined networking(SDN)in Wi-Fi networks.An association solution based on multi-criterion such as AP load,RSSI,and channel occupancy is proposed to satisfy the quality of service(QoS).SDNhaving an overall view of the network takes the association and reassociation decisions making the handoffs smooth in throughput performance.To implementWiMA extensive simulations runs are carried out on Mininet-NS3-Wi-Fi network simulator.The performance evaluation shows that the WiMA significantly reduces the average number of retransmissions by 5%–30%and enhances the throughput by 20%–50%,hence maintaining user fairness and accommodating more wireless devices and traffic load in the network,when compared to traditional client-driven(CD)approach and state of the art Wi-Balance approach.
文摘The Internet has penetrated all aspects of human society and has promoted social progress.Cyber-crimes in many forms are commonplace and are dangerous to society and national security.Cybersecurity has become a major concern for citizens and governments.The Internet functions and software applications play a vital role in cybersecurity research and practice.Most of the cyber-attacks are based on exploits in system or application software.It is of utmost urgency to investigate software security problems.The demand for Wi-Fi applications is proliferating but the security problem is growing,requiring an optimal solution from researchers.To overcome the shortcomings of the wired equivalent privacy(WEP)algorithm,the existing literature proposed security schemes forWi-Fi protected access(WPA)/WPA2.However,in practical applications,the WPA/WPA2 scheme still has some weaknesses that attackers exploit.To destroy a WPA/WPA2 security,it is necessary to get a PSK pre-shared key in pre-shared key mode,or an MSK master session key in the authentication mode.Brute-force cracking attacks can get a phase-shift keying(PSK)or a minimum shift keying(MSK).In real-world applications,many wireless local area networks(LANs)use the pre-shared key mode.Therefore,brute-force cracking of WPA/WPA2-PSK is important in that context.This article proposes a new mechanism to crack theWi-Fi password using a graphical processing unit(GPU)and enhances the efficiency through parallel computing of multiple GPU chips.Experimental results show that the proposed algorithm is effective and provides a procedure to enhance the security of Wi-Fi networks.
文摘This research is about the nuisances of social media applications on a Wi-Fi network at a university campus in Ghana. The aim was to access the security risk on the network, the speed of the network, and the data consumption of those platforms on the network. Network Mapper (Nmap Zenmap) Graphical User Interface 7.80 application was used to scan the various social media platforms to identify the protocols, ports, services, etc. to enable in accessing the vulnerability of the network. Data consumption of users’ mobile devices was collected and analyzed. Device Accounting (DA) based on the various social media applications was used. The results of the analysis revealed that the network is prone to attacks due to the nature of the protocols, ports, and services on social media applications. The numerous users with average monthly data consumption per user of 4 gigabytes, 300 megabytes on social media alone are a clear indication of high traffic as well as the cost of maintaining the network. A URL filtering of the social media websites was proposed on Rockus Outdoor AP to help curb the nuisance.
文摘3GPP在版本16(R16,Release 16)中升级了最小化路测(MDT,minimization of drive test)技术,提出移动终端可利用4G/5G网络自主上报Wi-Fi信号的接收信号强度指示(RSSI,received signal strength indicator),为运营商度量Wi-Fi网络的覆盖率带来了可能性。然而,现有基于MDT技术的网络覆盖度量方法严重依赖GPS提供的位置坐标,但全球定位系统(GPS,global positioning system)不能提供室内精准定位,无法用于室内Wi-Fi网络的覆盖度量。为此,提出了一种不依赖位置坐标的RSSI聚类方法,充分利用室内相近位置RSSI的统计相似性,区分不同位置的RSSI测量差异,在无位置坐标条件下准确估计出室内Wi-Fi网络的覆盖率。实验结果表明,所提方法估计的覆盖率与基于真实位置坐标测量的覆盖率相近,度量准确度明显优于现有的其他方法。
基金supported by the Notional Natural Science Foundation of China,No.81960417 (to JX)Guangxi Key Research and Development Program,No.GuiKeA B20159027 (to JX)the Natural Science Foundation of Guangxi Zhuang Autonomous Region,No.2022GXNSFBA035545 (to YG)。
文摘Immune changes and inflammatory responses have been identified as central events in the pathological process of spinal co rd injury.They can greatly affect nerve regeneration and functional recovery.However,there is still limited understanding of the peripheral immune inflammato ry response in spinal cord inju ry.In this study.we obtained microRNA expression profiles from the peripheral blood of patients with spinal co rd injury using high-throughput sequencing.We also obtained the mRNA expression profile of spinal cord injury patients from the Gene Expression Omnibus(GEO)database(GSE151371).We identified 54 differentially expressed microRNAs and 1656 diffe rentially expressed genes using bioinformatics approaches.Functional enrichment analysis revealed that various common immune and inflammation-related signaling pathways,such as neutrophil extracellular trap formation pathway,T cell receptor signaling pathway,and nuclear factor-κB signal pathway,we re abnormally activated or inhibited in spinal cord inju ry patient samples.We applied an integrated strategy that combines weighted gene co-expression network analysis,LASSO logistic regression,and SVM-RFE algorithm and identified three biomarke rs associated with spinal cord injury:ANO10,BST1,and ZFP36L2.We verified the expression levels and diagnostic perfo rmance of these three genes in the original training dataset and clinical samples through the receiver operating characteristic curve.Quantitative polymerase chain reaction results showed that ANO20 and BST1 mRNA levels were increased and ZFP36L2 mRNA was decreased in the peripheral blood of spinal cord injury patients.We also constructed a small RNA-mRNA interaction network using Cytoscape.Additionally,we evaluated the proportion of 22 types of immune cells in the peripheral blood of spinal co rd injury patients using the CIBERSORT tool.The proportions of naive B cells,plasma cells,monocytes,and neutrophils were increased while the proportions of memory B cells,CD8^(+)T cells,resting natural killer cells,resting dendritic cells,and eosinophils were markedly decreased in spinal cord injury patients increased compared with healthy subjects,and ANO10,BST1 and ZFP26L2we re closely related to the proportion of certain immune cell types.The findings from this study provide new directions for the development of treatment strategies related to immune inflammation in spinal co rd inju ry and suggest that ANO10,BST2,and ZFP36L2 are potential biomarkers for spinal cord injury.The study was registe red in the Chinese Clinical Trial Registry(registration No.ChiCTR2200066985,December 12,2022).
基金The authors acknowledge the funding provided by the National Key R&D Program of China(2021YFA1401200)Beijing Outstanding Young Scientist Program(BJJWZYJH01201910007022)+2 种基金National Natural Science Foundation of China(No.U21A20140,No.92050117,No.62005017)programBeijing Municipal Science&Technology Commission,Administrative Commission of Zhongguancun Science Park(No.Z211100004821009)This work was supported by the Synergetic Extreme Condition User Facility(SECUF).
文摘Optical neural networks have significant advantages in terms of power consumption,parallelism,and high computing speed,which has intrigued extensive attention in both academic and engineering communities.It has been considered as one of the powerful tools in promoting the fields of imaging processing and object recognition.However,the existing optical system architecture cannot be reconstructed to the realization of multi-functional artificial intelligence systems simultaneously.To push the development of this issue,we propose the pluggable diffractive neural networks(P-DNN),a general paradigm resorting to the cascaded metasurfaces,which can be applied to recognize various tasks by switching internal plug-ins.As the proof-of-principle,the recognition functions of six types of handwritten digits and six types of fashions are numerical simulated and experimental demonstrated at near-infrared regimes.Encouragingly,the proposed paradigm not only improves the flexibility of the optical neural networks but paves the new route for achieving high-speed,low-power and versatile artificial intelligence systems.
文摘Background In early adolescence,youth are highly prone to suicidal behaviours.Identifying modifiable risk factors during this critical phase is a priority to inform effective suicide prevention strategies.Aims To explore the risk and protective factors of suicidal behaviours(ie,suicidal ideation,plans and attempts)in early adolescence in China using a social-ecological perspective.Methods Using data from the cross-sectional project‘Healthy and Risky Behaviours Among Middle School Students in Anhui Province,China',stratified random cluster sampling was used to select 5724 middle school students who had completed self-report questionnaires in November 2020.Network analysis was employed to examine the correlates of suicidal ideation,plans and attempts at four levels,namely individual(sex,academic performance,serious physical llness/disability,history of self-harm,depression,impulsivity,sleep problems,resilience),family(family economic status,relationship with mother,relationship with father,family violence,childhood abuse,parental mental illness),school(relationship with teachers,relationship with classmates,school-bullying victimisation and perpetration)and social(social support,satisfaction with society).Results In total,37.9%,19.0%and 5.5%of the students reported suicidal ideation,plans and attempts in the past 6 months,respectively.The estimated network revealed that suicidal ideation,plans and attempts were collectively associated with a history of self-harm,sleep problems,childhood abuse,school bullying and victimisation.Centrality analysis indicated that the most influential nodes in the network were history of self-harm and childhood abuse.Notably,the network also showed unique correlates of suicidal ideation(sex,weight=0.60;impulsivity,weight=0.24;family violence,weight=0.17;relationship with teachers,weight=-0.03;school-bullying perpetration,weight=0.22),suicidal plans(social support,weight=-0.15)and suicidal attempts(relationship with mother,weight=-0.10;parental mental llness,weight=0.61).Conclusions This study identified the correlates of suicidal ideation,plans and attempts,and provided practical implications for suicide prevention for young adolescents in China.Firstly,this study highlighted the importance of joint interventions across multiple departments.Secondly,the common risk factors of suicidal ideation,plans and attempts were elucidated.Thirdly,this study proposed target interventions to address the unique influencing factors of suicidal ideation,plans and attempts.
基金the TCL Science and Technology Innovation Fundthe Youth Science and Technology Talent Promotion Project of Jiangsu Association for Science and Technology,Grant/Award Number:JSTJ‐2023‐017+4 种基金Shenzhen Municipal Science and Technology Innovation Council,Grant/Award Number:JSGG20220831105002004National Natural Science Foundation of China,Grant/Award Number:62201468Postdoctoral Research Foundation of China,Grant/Award Number:2022M722599the Fundamental Research Funds for the Central Universities,Grant/Award Number:D5000210966the Guangdong Basic and Applied Basic Research Foundation,Grant/Award Number:2021A1515110079。
文摘Convolutional neural networks depend on deep network architectures to extract accurate information for image super‐resolution.However,obtained information of these con-volutional neural networks cannot completely express predicted high‐quality images for complex scenes.A dynamic network for image super‐resolution(DSRNet)is presented,which contains a residual enhancement block,wide enhancement block,feature refine-ment block and construction block.The residual enhancement block is composed of a residual enhanced architecture to facilitate hierarchical features for image super‐resolution.To enhance robustness of obtained super‐resolution model for complex scenes,a wide enhancement block achieves a dynamic architecture to learn more robust information to enhance applicability of an obtained super‐resolution model for varying scenes.To prevent interference of components in a wide enhancement block,a refine-ment block utilises a stacked architecture to accurately learn obtained features.Also,a residual learning operation is embedded in the refinement block to prevent long‐term dependency problem.Finally,a construction block is responsible for reconstructing high‐quality images.Designed heterogeneous architecture can not only facilitate richer structural information,but also be lightweight,which is suitable for mobile digital devices.Experimental results show that our method is more competitive in terms of performance,recovering time of image super‐resolution and complexity.The code of DSRNet can be obtained at https://github.com/hellloxiaotian/DSRNet.
基金supported by the Japan Society for the Promotion of Science(JSPS)KAKENHI(JP22H03643)Japan Science and Technology Agency(JST)Support for Pioneering Research Initiated by the Next Generation(SPRING)(JPMJSP2145)+2 种基金JST Through the Establishment of University Fellowships Towards the Creation of Science Technology Innovation(JPMJFS2115)the National Natural Science Foundation of China(52078382)the State Key Laboratory of Disaster Reduction in Civil Engineering(CE19-A-01)。
文摘Accurately predicting fluid forces acting on the sur-face of a structure is crucial in engineering design.However,this task becomes particularly challenging in turbulent flow,due to the complex and irregular changes in the flow field.In this study,we propose a novel deep learning method,named mapping net-work-coordinated stacked gated recurrent units(MSU),for pre-dicting pressure on a circular cylinder from velocity data.Specifi-cally,our coordinated learning strategy is designed to extract the most critical velocity point for prediction,a process that has not been explored before.In our experiments,MSU extracts one point from a velocity field containing 121 points and utilizes this point to accurately predict 100 pressure points on the cylinder.This method significantly reduces the workload of data measure-ment in practical engineering applications.Our experimental results demonstrate that MSU predictions are highly similar to the real turbulent data in both spatio-temporal and individual aspects.Furthermore,the comparison results show that MSU predicts more precise results,even outperforming models that use all velocity field points.Compared with state-of-the-art methods,MSU has an average improvement of more than 45%in various indicators such as root mean square error(RMSE).Through comprehensive and authoritative physical verification,we estab-lished that MSU’s prediction results closely align with pressure field data obtained in real turbulence fields.This confirmation underscores the considerable potential of MSU for practical applications in real engineering scenarios.The code is available at https://github.com/zhangzm0128/MSU.
基金The Qian Xuesen Youth Innovation Foundation from China Aerospace Science and Technology Corporation(Grant Number 2022JY51).
文摘The demand for adopting neural networks in resource-constrained embedded devices is continuously increasing.Quantization is one of the most promising solutions to reduce computational cost and memory storage on embedded devices.In order to reduce the complexity and overhead of deploying neural networks on Integeronly hardware,most current quantization methods use a symmetric quantization mapping strategy to quantize a floating-point neural network into an integer network.However,although symmetric quantization has the advantage of easier implementation,it is sub-optimal for cases where the range could be skewed and not symmetric.This often comes at the cost of lower accuracy.This paper proposed an activation redistribution-based hybrid asymmetric quantizationmethod for neural networks.The proposedmethod takes data distribution into consideration and can resolve the contradiction between the quantization accuracy and the ease of implementation,balance the trade-off between clipping range and quantization resolution,and thus improve the accuracy of the quantized neural network.The experimental results indicate that the accuracy of the proposed method is 2.02%and 5.52%higher than the traditional symmetric quantization method for classification and detection tasks,respectively.The proposed method paves the way for computationally intensive neural network models to be deployed on devices with limited computing resources.Codes will be available on https://github.com/ycjcy/Hybrid-Asymmetric-Quantization.